Metamath Proof Explorer


Theorem lmimgim

Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmimgim ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) )

Proof

Step Hyp Ref Expression
1 lmimlmhm ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) )
2 lmghm ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
3 1 2 syl ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
6 4 5 lmimf1o ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) )
7 4 5 isgim ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) )
8 3 6 7 sylanbrc ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) )