Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
|
lmicl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
|
lmimid.s |
⊢ 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) |
11 |
|
lmimid.r |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
12 |
|
lmimid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
13 |
|
lmimid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
14 |
|
lmimid.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
15 |
|
lmimid.d |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
16 |
10
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ) |
18 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
19 |
1 7 3 4 8 13
|
tglnpt |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
20 |
1 2 3 7 18 4 19 10 14
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) ∈ 𝑃 ) |
21 |
1 2 3 4 5 14 20 18 19
|
ismidb |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ 𝐵 ) ‘ 𝐶 ) ↔ ( 𝐶 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐶 ) ) = 𝐵 ) ) |
22 |
17 21
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐶 ) ) = 𝐵 ) |
23 |
22 13
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐶 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐶 ) ) ∈ 𝐷 ) |
24 |
|
df-ne |
⊢ ( 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ↔ ¬ 𝐶 = ( 𝑆 ‘ 𝐶 ) ) |
25 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐷 ∈ ran 𝐿 ) |
27 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
28 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → ( 𝑆 ‘ 𝐶 ) ∈ 𝑃 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) |
30 |
1 3 7 25 27 28 29
|
tgelrnln |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ∈ ran 𝐿 ) |
31 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐵 ∈ 𝐷 ) |
32 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
33 |
1 2 3 4 5 14 20
|
midbtwn |
⊢ ( 𝜑 → ( 𝐶 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐶 ) ) ∈ ( 𝐶 𝐼 ( 𝑆 ‘ 𝐶 ) ) ) |
34 |
22 33
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐶 𝐼 ( 𝑆 ‘ 𝐶 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐵 ∈ ( 𝐶 𝐼 ( 𝑆 ‘ 𝐶 ) ) ) |
36 |
1 3 7 25 27 28 32 29 35
|
btwnlng1 |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐵 ∈ ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ) |
37 |
31 36
|
elind |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐵 ∈ ( 𝐷 ∩ ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ) ) |
38 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐴 ∈ 𝐷 ) |
39 |
1 3 7 25 27 28 29
|
tglinerflx1 |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐶 ∈ ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ) |
40 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐴 ≠ 𝐵 ) |
41 |
1 2 3 7 18 4 19 10 14
|
mirinv |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
42 |
|
eqcom |
⊢ ( 𝐵 = 𝐶 ↔ 𝐶 = 𝐵 ) |
43 |
41 42
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) = 𝐶 ↔ 𝐶 = 𝐵 ) ) |
44 |
43
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐵 ) → ( 𝑆 ‘ 𝐶 ) = 𝐶 ) |
45 |
44
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐵 ) → 𝐶 = ( 𝑆 ‘ 𝐶 ) ) |
46 |
45
|
ex |
⊢ ( 𝜑 → ( 𝐶 = 𝐵 → 𝐶 = ( 𝑆 ‘ 𝐶 ) ) ) |
47 |
46
|
necon3d |
⊢ ( 𝜑 → ( 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) → 𝐶 ≠ 𝐵 ) ) |
48 |
47
|
imp |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐶 ≠ 𝐵 ) |
49 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
50 |
1 2 3 7 25 26 30 37 38 39 40 48 49
|
ragperp |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ) |
51 |
50
|
ex |
⊢ ( 𝜑 → ( 𝐶 ≠ ( 𝑆 ‘ 𝐶 ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ) ) |
52 |
24 51
|
syl5bir |
⊢ ( 𝜑 → ( ¬ 𝐶 = ( 𝑆 ‘ 𝐶 ) → 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ) ) |
53 |
52
|
orrd |
⊢ ( 𝜑 → ( 𝐶 = ( 𝑆 ‘ 𝐶 ) ∨ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ) ) |
54 |
53
|
orcomd |
⊢ ( 𝜑 → ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ∨ 𝐶 = ( 𝑆 ‘ 𝐶 ) ) ) |
55 |
1 2 3 4 5 6 7 8 14 20
|
islmib |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) = ( 𝑀 ‘ 𝐶 ) ↔ ( ( 𝐶 ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐶 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐶 𝐿 ( 𝑆 ‘ 𝐶 ) ) ∨ 𝐶 = ( 𝑆 ‘ 𝐶 ) ) ) ) ) |
56 |
23 54 55
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( 𝑀 ‘ 𝐶 ) ) |
57 |
56
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) ) |