Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
1 2 3 4 5 6 7 8
|
lmif1o |
⊢ ( 𝜑 → 𝑀 : 𝑃 –1-1-onto→ 𝑃 ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐺 ∈ TarskiG ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐺 DimTarskiG≥ 2 ) |
12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐷 ∈ ran 𝐿 ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑎 ∈ 𝑃 ) |
14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑏 ∈ 𝑃 ) |
15 |
1 2 3 10 11 6 7 12 13 14
|
lmiiso |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
16 |
15
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
17 |
1 2
|
ismot |
⊢ ( 𝐺 ∈ TarskiG → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
19 |
9 16 18
|
mpbir2and |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ) |