Step |
Hyp |
Ref |
Expression |
1 |
|
lmiopp.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
lmiopp.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
lmiopp.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
lmiopp.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
lmiopp.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
lmiopp.h |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
7 |
|
lmiopp.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
8 |
|
lmiopp.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
9 |
|
lmiopp.n |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
10 |
|
lmiopp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
11 |
|
lmiopp.1 |
⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐷 ) |
12 |
1 2 3 5 6 9 4 7 10
|
lmicl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑃 ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ) |
14 |
1 2 3 5 6 9 4 7 10 12
|
islmib |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ↔ ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ∨ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
15 |
13 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 ( 𝑀 ‘ 𝐴 ) ) ∨ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ 𝐷 ) |
17 |
1 2 3 5 6 9 4 7 10
|
lmilmi |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) |
18 |
17
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ↔ 𝐴 = ( 𝑀 ‘ 𝐴 ) ) ) |
19 |
1 2 3 5 6 9 4 7 12
|
lmiinv |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ↔ ( 𝑀 ‘ 𝐴 ) ∈ 𝐷 ) ) |
20 |
|
eqcom |
⊢ ( 𝐴 = ( 𝑀 ‘ 𝐴 ) ↔ ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ( 𝑀 ‘ 𝐴 ) ↔ ( 𝑀 ‘ 𝐴 ) = 𝐴 ) ) |
22 |
18 19 21
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ∈ 𝐷 ↔ ( 𝑀 ‘ 𝐴 ) = 𝐴 ) ) |
23 |
1 2 3 5 6 9 4 7 10
|
lmiinv |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = 𝐴 ↔ 𝐴 ∈ 𝐷 ) ) |
24 |
22 23
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) ∈ 𝐷 ↔ 𝐴 ∈ 𝐷 ) ) |
25 |
11 24
|
mtbird |
⊢ ( 𝜑 → ¬ ( 𝑀 ‘ 𝐴 ) ∈ 𝐷 ) |
26 |
1 2 3 5 6 10 12
|
midbtwn |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) ( 𝑀 ‘ 𝐴 ) ) ∈ ( 𝐴 𝐼 ( 𝑀 ‘ 𝐴 ) ) ) |
27 |
1 2 3 8 10 12 16 11 25 26
|
islnoppd |
⊢ ( 𝜑 → 𝐴 𝑂 ( 𝑀 ‘ 𝐴 ) ) |