Step |
Hyp |
Ref |
Expression |
1 |
|
lmle.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
lmle.3 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
3 |
|
lmle.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
4 |
|
lmle.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
lmle.7 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
6 |
|
lmle.8 |
⊢ ( 𝜑 → 𝑄 ∈ 𝑋 ) |
7 |
|
lmle.9 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
8 |
|
lmle.10 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
9 |
2
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
11 |
|
lmrel |
⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) |
12 |
|
releldm |
⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
13 |
11 5 12
|
sylancr |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
14 |
1 10 4 13
|
lmff |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
15 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑗 ) |
16 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑗 ∈ 𝑍 ) |
18 |
17 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
19 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑗 ∈ ℤ ) |
21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝑄 𝐷 𝑥 ) = ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
23 |
22
|
breq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 ↔ ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) ) |
24 |
|
fvres |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
26 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) |
27 |
26
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ 𝑋 ) |
28 |
25 27
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
29 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
30 |
17 29
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
31 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
32 |
30 31
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑄 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
33 |
23 28 32
|
elrabd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ) |
34 |
|
eqid |
⊢ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } = { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } |
35 |
2 34
|
blcld |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ∈ ( Clsd ‘ 𝐽 ) ) |
36 |
3 6 7 35
|
syl3anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ∈ ( Clsd ‘ 𝐽 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ∈ ( Clsd ‘ 𝐽 ) ) |
38 |
15 16 20 21 33 37
|
lmcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ 𝑋 ) ) → 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ) |
39 |
14 38
|
rexlimddv |
⊢ ( 𝜑 → 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ) |
40 |
|
oveq2 |
⊢ ( 𝑥 = 𝑃 → ( 𝑄 𝐷 𝑥 ) = ( 𝑄 𝐷 𝑃 ) ) |
41 |
40
|
breq1d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 ↔ ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) ) |
42 |
41
|
elrab |
⊢ ( 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) ) |
43 |
42
|
simprbi |
⊢ ( 𝑃 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑄 𝐷 𝑥 ) ≤ 𝑅 } → ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) |
44 |
39 43
|
syl |
⊢ ( 𝜑 → ( 𝑄 𝐷 𝑃 ) ≤ 𝑅 ) |