Step |
Hyp |
Ref |
Expression |
1 |
|
lmmbr.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
lmmbr.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
3 |
1
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
5 |
4
|
lmbr |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |
6 |
|
rpxr |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) |
7 |
1
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ) |
8 |
6 7
|
syl3an3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ) |
9 |
|
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) |
10 |
|
eleq2 |
⊢ ( 𝑢 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ( 𝑃 ∈ 𝑢 ↔ 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
11 |
|
feq3 |
⊢ ( 𝑢 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ( ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ↔ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑢 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ↔ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑢 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
14 |
13
|
rspcva |
⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) → ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
15 |
14
|
impancom |
⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ∧ 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
16 |
8 9 15
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
17 |
16
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
18 |
17
|
adantlrl |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
19 |
18
|
impancom |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) → ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
20 |
19
|
ralrimiv |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) |
21 |
1
|
mopni2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ∧ 𝑃 ∈ 𝑢 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 ) |
22 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∧ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 ) → ∃ 𝑥 ∈ ℝ+ ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 ) ) |
23 |
|
fss |
⊢ ( ( ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) |
24 |
23
|
expcom |
⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 → ( ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
25 |
24
|
reximdv |
⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 → ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
26 |
25
|
impcom |
⊢ ( ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) |
27 |
26
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ℝ+ ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) |
28 |
22 27
|
syl |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∧ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑢 ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) |
29 |
21 28
|
sylan2 |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ∧ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ∧ 𝑃 ∈ 𝑢 ) ) → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) |
30 |
29
|
3exp2 |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑢 ∈ 𝐽 → ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |
31 |
30
|
impcom |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑢 ∈ 𝐽 → ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
32 |
31
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝑢 ∈ 𝐽 → ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
33 |
32
|
ralrimiv |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
34 |
20 33
|
impbida |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
35 |
34
|
pm5.32da |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
36 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
37 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
38 |
35 36 37
|
3bitr4g |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
39 |
2 38
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
40 |
5 39
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |