| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmmbr.2 | 
							⊢ 𝐽  =  ( MetOpen ‘ 𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							lmmbr.3 | 
							⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							lmmbr | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							uzf | 
							⊢ ℤ≥ : ℤ ⟶ 𝒫  ℤ  | 
						
						
							| 6 | 
							
								
							 | 
							ffn | 
							⊢ ( ℤ≥ : ℤ ⟶ 𝒫  ℤ  →  ℤ≥  Fn  ℤ )  | 
						
						
							| 7 | 
							
								
							 | 
							reseq2 | 
							⊢ ( 𝑦  =  ( ℤ≥ ‘ 𝑗 )  →  ( 𝐹  ↾  𝑦 )  =  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  =  ( ℤ≥ ‘ 𝑗 )  →  𝑦  =  ( ℤ≥ ‘ 𝑗 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							feq12d | 
							⊢ ( 𝑦  =  ( ℤ≥ ‘ 𝑗 )  →  ( ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rexrn | 
							⊢ ( ℤ≥  Fn  ℤ  →  ( ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) )  | 
						
						
							| 11 | 
							
								5 6 10
							 | 
							mp2b | 
							⊢ ( ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp2l | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  ∈  dom  ∞Met )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  𝑋  ∈  dom  ∞Met )  | 
						
						
							| 15 | 
							
								
							 | 
							cnex | 
							⊢ ℂ  ∈  V  | 
						
						
							| 16 | 
							
								
							 | 
							elpmg | 
							⊢ ( ( 𝑋  ∈  dom  ∞Met  ∧  ℂ  ∈  V )  →  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ↔  ( Fun  𝐹  ∧  𝐹  ⊆  ( ℂ  ×  𝑋 ) ) ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							sylancl | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ↔  ( Fun  𝐹  ∧  𝐹  ⊆  ( ℂ  ×  𝑋 ) ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							mpbid | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( Fun  𝐹  ∧  𝐹  ⊆  ( ℂ  ×  𝑋 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simpld | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  Fun  𝐹 )  | 
						
						
							| 20 | 
							
								
							 | 
							ffvresb | 
							⊢ ( Fun  𝐹  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							rpxr | 
							⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ* )  | 
						
						
							| 23 | 
							
								
							 | 
							elbl | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑥  ∈  ℝ* )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) )  <  𝑥 ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl3an3 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) )  <  𝑥 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							xmetsym | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  →  ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							breq1d | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  →  ( ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							3expa | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  →  ( ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							pm5.32da | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							3adant3 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							bitrd | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							3adant2l | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							anbi2d | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							bitr4di | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							ralbidv | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 36 | 
							
								21 35
							 | 
							bitrd | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							rexbidv | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  ℤ ( 𝐹  ↾  ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 38 | 
							
								11 37
							 | 
							bitrid | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							3expa | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralbidva | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 ) )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							pm5.32da | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 42 | 
							
								2 41
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 43 | 
							
								4 42
							 | 
							bitrid | 
							⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) )  ↔  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋 )  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							bitr4di | 
							⊢ ( 𝜑  →  ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ran  ℤ≥ ( 𝐹  ↾  𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 46 | 
							
								3 45
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  ℤ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  |