Step |
Hyp |
Ref |
Expression |
1 |
|
lmmbr.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
lmmbr.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
3 |
1 2
|
lmmbr |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
4 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
5 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
6 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
7 |
|
reseq2 |
⊢ ( 𝑦 = ( ℤ≥ ‘ 𝑗 ) → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) |
8 |
|
id |
⊢ ( 𝑦 = ( ℤ≥ ‘ 𝑗 ) → 𝑦 = ( ℤ≥ ‘ 𝑗 ) ) |
9 |
7 8
|
feq12d |
⊢ ( 𝑦 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
10 |
9
|
rexrn |
⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) |
11 |
5 6 10
|
mp2b |
⊢ ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) |
12 |
|
simp2l |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
13 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑋 ∈ dom ∞Met ) |
15 |
|
cnex |
⊢ ℂ ∈ V |
16 |
|
elpmg |
⊢ ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
17 |
14 15 16
|
sylancl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
18 |
12 17
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) |
19 |
18
|
simpld |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → Fun 𝐹 ) |
20 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
22 |
|
rpxr |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) |
23 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
24 |
22 23
|
syl3an3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
25 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) ) |
26 |
25
|
breq1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) |
27 |
26
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) |
28 |
27
|
pm5.32da |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
29 |
28
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝑃 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
30 |
24 29
|
bitrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
31 |
30
|
3adant2l |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
32 |
31
|
anbi2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
33 |
|
3anass |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
34 |
32 33
|
bitr4di |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
35 |
34
|
ralbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
36 |
21 35
|
bitrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
37 |
36
|
rexbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℤ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
38 |
11 37
|
syl5bb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
39 |
38
|
3expa |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
40 |
39
|
ralbidva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
41 |
40
|
pm5.32da |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
42 |
2 41
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
43 |
4 42
|
syl5bb |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
44 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
45 |
43 44
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ran ℤ≥ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
46 |
3 45
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |