| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmmbr.2 | 
							⊢ 𝐽  =  ( MetOpen ‘ 𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							lmmbr.3 | 
							⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lmmbr3.5 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							lmmbr3.6 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							lmmbrf.7 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							lmmbrf.8 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ 𝑋 )  | 
						
						
							| 7 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  ∈  dom  ∞Met )  | 
						
						
							| 8 | 
							
								
							 | 
							cnex | 
							⊢ ℂ  ∈  V  | 
						
						
							| 9 | 
							
								7 8
							 | 
							jctir | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑋  ∈  dom  ∞Met  ∧  ℂ  ∈  V ) )  | 
						
						
							| 10 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ  | 
						
						
							| 11 | 
							
								
							 | 
							zsscn | 
							⊢ ℤ  ⊆  ℂ  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sstri | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℂ  | 
						
						
							| 13 | 
							
								3 12
							 | 
							eqsstri | 
							⊢ 𝑍  ⊆  ℂ  | 
						
						
							| 14 | 
							
								13
							 | 
							jctr | 
							⊢ ( 𝐹 : 𝑍 ⟶ 𝑋  →  ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑍  ⊆  ℂ ) )  | 
						
						
							| 15 | 
							
								
							 | 
							elpm2r | 
							⊢ ( ( ( 𝑋  ∈  dom  ∞Met  ∧  ℂ  ∈  V )  ∧  ( 𝐹 : 𝑍 ⟶ 𝑋  ∧  𝑍  ⊆  ℂ ) )  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 16 | 
							
								9 14 15
							 | 
							syl2an | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐹 : 𝑍 ⟶ 𝑋 )  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 17 | 
							
								2 6 16
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋  ↑pm  ℂ ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							biantrurd | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) ) )  | 
						
						
							| 19 | 
							
								3
							 | 
							uztrn2 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 21 | 
							
								5
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  =  ( 𝐴 𝐷 𝑃 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ( 𝐴 𝐷 𝑃 )  <  𝑥 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ( 𝐴 𝐷 𝑃 )  <  𝑥 ) )  | 
						
						
							| 24 | 
							
								6
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  𝐹  =  𝑍 )  | 
						
						
							| 25 | 
							
								24
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  dom  𝐹  ↔  𝑘  ∈  𝑍 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							biimpar | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  dom  𝐹 )  | 
						
						
							| 27 | 
							
								6
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							biantrurd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 )  ↔  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							bitr4di | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 ) )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 33 | 
							
								23 32
							 | 
							bitr3d | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 ) )  →  ( ( 𝐴 𝐷 𝑃 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐴 𝐷 𝑃 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 35 | 
							
								20 34
							 | 
							syldan | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐴 𝐷 𝑃 )  <  𝑥  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralbidva | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 )  <  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							rexbidva | 
							⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 )  <  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ralbidv | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 )  <  𝑥  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							anbi2d | 
							⊢ ( 𝜑  →  ( ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 )  <  𝑥 )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 40 | 
							
								1 2 3 4
							 | 
							lmmbr3 | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) )  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) ) )  | 
						
						
							| 43 | 
							
								18 39 42
							 | 
							3bitr4rd | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴 𝐷 𝑃 )  <  𝑥 ) ) )  |