| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmmbr.2 | 
							⊢ 𝐽  =  ( MetOpen ‘ 𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							lmmbr.3 | 
							⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lmmbr3.5 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							lmmbr3.6 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							lmmbrf.7 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							lmmcvg.8 | 
							⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  | 
						
						
							| 7 | 
							
								
							 | 
							lmmcvg.9 | 
							⊢ ( 𝜑  →  𝑅  ∈  ℝ+ )  | 
						
						
							| 8 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝑅  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3anbi3d | 
							⊢ ( 𝑥  =  𝑅  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 )  ↔  ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rexralbidv | 
							⊢ ( 𝑥  =  𝑅  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							lmmbr3 | 
							⊢ ( 𝜑  →  ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋  ↑pm  ℂ )  ∧  𝑃  ∈  𝑋  ∧  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simp3d | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑥 ) )  | 
						
						
							| 14 | 
							
								10 13 7
							 | 
							rspcdva | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) )  | 
						
						
							| 15 | 
							
								3
							 | 
							uztrn2 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 16 | 
							
								
							 | 
							3simpc | 
							⊢ ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 ) )  | 
						
						
							| 17 | 
							
								5
							 | 
							eleq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ↔  𝐴  ∈  𝑋 ) )  | 
						
						
							| 18 | 
							
								5
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  =  ( 𝐴 𝐷 𝑃 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅  ↔  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							anbi12d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  ↔  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 21 | 
							
								16 20
							 | 
							imbitrid | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 22 | 
							
								15 21
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ralimdva | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							reximdva | 
							⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑘  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 )  <  𝑅 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) ) )  | 
						
						
							| 26 | 
							
								14 25
							 | 
							mpd | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐴  ∈  𝑋  ∧  ( 𝐴 𝐷 𝑃 )  <  𝑅 ) )  |