| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmmo.1 |
⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
| 2 |
|
lmmo.4 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
| 3 |
|
lmmo.5 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) |
| 4 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) ) |
| 5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 6 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝐴 ∈ 𝑥 ) |
| 7 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 1 ∈ ℤ ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
| 9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝑥 ∈ 𝐽 ) |
| 10 |
5 6 7 8 9
|
lmcvg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) |
| 11 |
10
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 12 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝐵 ∈ 𝑦 ) |
| 13 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 1 ∈ ℤ ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) |
| 15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) |
| 16 |
5 12 13 14 15
|
lmcvg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) |
| 17 |
16
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 18 |
11 17
|
anim12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) ) |
| 19 |
5
|
rexanuz2 |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ↔ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 20 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
| 21 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 22 |
|
ne0i |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
| 23 |
20 21 22
|
3syl |
⊢ ( 𝑗 ∈ ℕ → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
| 24 |
|
r19.2z |
⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 25 |
|
elin |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 26 |
|
n0i |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ∩ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 27 |
25 26
|
sylbir |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 28 |
27
|
rexlimivw |
⊢ ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 29 |
24 28
|
syl |
⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 30 |
23 29
|
sylan |
⊢ ( ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 31 |
30
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 32 |
19 31
|
sylbir |
⊢ ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 33 |
18 32
|
syl6 |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 34 |
4 33
|
biimtrid |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 35 |
34
|
expdimp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 36 |
|
imnan |
⊢ ( ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ¬ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 37 |
35 36
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ¬ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 38 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 39 |
37 38
|
sylnibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ¬ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 40 |
39
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) → ¬ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 41 |
40
|
nrexdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ¬ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 42 |
41
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 43 |
|
haustop |
⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) |
| 44 |
1 43
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 45 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 46 |
44 45
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 47 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 48 |
46 2 47
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝐽 ) |
| 49 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) → 𝐵 ∈ ∪ 𝐽 ) |
| 50 |
46 3 49
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ∪ 𝐽 ) |
| 51 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 52 |
51
|
hausnei |
⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝐴 ∈ ∪ 𝐽 ∧ 𝐵 ∈ ∪ 𝐽 ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 53 |
52
|
3exp2 |
⊢ ( 𝐽 ∈ Haus → ( 𝐴 ∈ ∪ 𝐽 → ( 𝐵 ∈ ∪ 𝐽 → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) ) |
| 54 |
1 48 50 53
|
syl3c |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
| 55 |
54
|
necon1bd |
⊢ ( 𝜑 → ( ¬ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝐴 = 𝐵 ) ) |
| 56 |
42 55
|
mpd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |