Step |
Hyp |
Ref |
Expression |
1 |
|
lmmo.1 |
⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
2 |
|
lmmo.4 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
3 |
|
lmmo.5 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) |
4 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝐴 ∈ 𝑥 ) |
7 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 1 ∈ ℤ ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
9 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → 𝑥 ∈ 𝐽 ) |
10 |
5 6 7 8 9
|
lmcvg |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) |
11 |
10
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) |
12 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝐵 ∈ 𝑦 ) |
13 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 1 ∈ ℤ ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → 𝑦 ∈ 𝐽 ) |
16 |
5 12 13 14 15
|
lmcvg |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
18 |
11 17
|
anim12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) ) |
19 |
5
|
rexanuz2 |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ↔ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
20 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
21 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
22 |
|
ne0i |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
23 |
20 21 22
|
3syl |
⊢ ( 𝑗 ∈ ℕ → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
24 |
|
r19.2z |
⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
25 |
|
elin |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) |
26 |
|
n0i |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ∩ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
27 |
25 26
|
sylbir |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
28 |
27
|
rexlimivw |
⊢ ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
29 |
24 28
|
syl |
⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
30 |
23 29
|
sylan |
⊢ ( ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
31 |
30
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
32 |
19 31
|
sylbir |
⊢ ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) |
33 |
18 32
|
syl6 |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝐴 ∈ 𝑥 ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝐵 ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
34 |
4 33
|
syl5bi |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
35 |
34
|
expdimp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
36 |
|
imnan |
⊢ ( ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) → ¬ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ¬ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
37 |
35 36
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ¬ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
38 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ) ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
39 |
37 38
|
sylnibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) ) → ¬ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
40 |
39
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ 𝐽 ) → ¬ ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
41 |
40
|
nrexdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ¬ ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
42 |
41
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
43 |
|
haustop |
⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) |
44 |
1 43
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
45 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
46 |
44 45
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
47 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) → 𝐴 ∈ ∪ 𝐽 ) |
48 |
46 2 47
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝐽 ) |
49 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐵 ) → 𝐵 ∈ ∪ 𝐽 ) |
50 |
46 3 49
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ∪ 𝐽 ) |
51 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
52 |
51
|
hausnei |
⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝐴 ∈ ∪ 𝐽 ∧ 𝐵 ∈ ∪ 𝐽 ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
53 |
52
|
3exp2 |
⊢ ( 𝐽 ∈ Haus → ( 𝐴 ∈ ∪ 𝐽 → ( 𝐵 ∈ ∪ 𝐽 → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) ) |
54 |
1 48 50 53
|
syl3c |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
55 |
54
|
necon1bd |
⊢ ( 𝜑 → ( ¬ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝐵 ∈ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) → 𝐴 = 𝐵 ) ) |
56 |
42 55
|
mpd |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |