| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmnn.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
lmnn.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 3 |
|
lmnn.4 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 4 |
|
lmnn.5 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
| 5 |
|
lmnn.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < ( 1 / 𝑘 ) ) |
| 6 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 8 |
7
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 9 |
7
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝑥 ) ) |
| 10 |
|
flge0nn0 |
⊢ ( ( ( 1 / 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑥 ) ) → ( ⌊ ‘ ( 1 / 𝑥 ) ) ∈ ℕ0 ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ ( 1 / 𝑥 ) ) ∈ ℕ0 ) |
| 12 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ) |
| 14 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 15 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 16 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 17 |
13 16
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 18 |
15 17
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 19 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑃 ∈ 𝑋 ) |
| 20 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) ∈ ℝ* ) |
| 21 |
14 18 19 20
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) ∈ ℝ* ) |
| 22 |
17
|
nnrecred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 23 |
22
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
| 24 |
|
rpxr |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) |
| 25 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑥 ∈ ℝ* ) |
| 26 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < ( 1 / 𝑘 ) ) |
| 27 |
17 26
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < ( 1 / 𝑘 ) ) |
| 28 |
8
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 29 |
13
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℝ ) |
| 31 |
17
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 32 |
|
flltp1 |
⊢ ( ( 1 / 𝑥 ) ∈ ℝ → ( 1 / 𝑥 ) < ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) |
| 33 |
28 32
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑥 ) < ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) |
| 34 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ≤ 𝑘 ) |
| 35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ≤ 𝑘 ) |
| 36 |
28 30 31 33 35
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑥 ) < 𝑘 ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 38 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 39 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 40 |
39
|
rpregt0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 41 |
|
ltrec1 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 1 / 𝑥 ) < 𝑘 ↔ ( 1 / 𝑘 ) < 𝑥 ) ) |
| 42 |
38 40 41
|
syl2an |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑥 ) < 𝑘 ↔ ( 1 / 𝑘 ) < 𝑥 ) ) |
| 43 |
37 17 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 1 / 𝑥 ) < 𝑘 ↔ ( 1 / 𝑘 ) < 𝑥 ) ) |
| 44 |
36 43
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑘 ) < 𝑥 ) |
| 45 |
21 23 25 27 44
|
xrlttrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 46 |
45
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 47 |
|
fveq2 |
⊢ ( 𝑗 = ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) |
| 48 |
47
|
raleqdv |
⊢ ( 𝑗 = ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) |
| 49 |
48
|
rspcev |
⊢ ( ( ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 50 |
13 46 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 51 |
50
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 52 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 53 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 54 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 55 |
1 2 52 53 54 4
|
lmmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 56 |
3 51 55
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |