Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
lmod0vid
Metamath Proof Explorer
Description: Identity equivalent to the value of the zero vector. Provides a
convenient way to compute the value. (Contributed by NM , 9-Mar-2014)
(Revised by Mario Carneiro , 19-Jun-2014)
Ref
Expression
Hypotheses
0vlid.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
0vlid.a
⊢ + = ( +g ‘ 𝑊 )
0vlid.z
⊢ 0 = ( 0g ‘ 𝑊 )
Assertion
lmod0vid
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) = 𝑋 ↔ 0 = 𝑋 ) )
Proof
Step
Hyp
Ref
Expression
1
0vlid.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
2
0vlid.a
⊢ + = ( +g ‘ 𝑊 )
3
0vlid.z
⊢ 0 = ( 0g ‘ 𝑊 )
4
lmodgrp
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
5
1 2 3
grpid
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) = 𝑋 ↔ 0 = 𝑋 ) )
6
4 5
sylan
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑋 + 𝑋 ) = 𝑋 ↔ 0 = 𝑋 ) )