Metamath Proof Explorer


Theorem lmod0vid

Description: Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses 0vlid.v 𝑉 = ( Base ‘ 𝑊 )
0vlid.a + = ( +g𝑊 )
0vlid.z 0 = ( 0g𝑊 )
Assertion lmod0vid ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( ( 𝑋 + 𝑋 ) = 𝑋0 = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 0vlid.v 𝑉 = ( Base ‘ 𝑊 )
2 0vlid.a + = ( +g𝑊 )
3 0vlid.z 0 = ( 0g𝑊 )
4 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
5 1 2 3 grpid ( ( 𝑊 ∈ Grp ∧ 𝑋𝑉 ) → ( ( 𝑋 + 𝑋 ) = 𝑋0 = 𝑋 ) )
6 4 5 sylan ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( ( 𝑋 + 𝑋 ) = 𝑋0 = 𝑋 ) )