Metamath Proof Explorer
Description: Right identity law for the zero vector. ( ax-hvaddid analog.)
(Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
0vlid.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
0vlid.a |
⊢ + = ( +g ‘ 𝑊 ) |
|
|
0vlid.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
|
Assertion |
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + 0 ) = 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
0vlid.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
0vlid.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
0vlid.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
5 |
1 2 3
|
grprid |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + 0 ) = 𝑋 ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + 0 ) = 𝑋 ) |