Description: A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
2 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) | |
3 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
4 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
5 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
6 | 4 5 | lmodcom | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) ) |
7 | 1 2 3 6 | isabld | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |