Metamath Proof Explorer


Theorem lmodabl

Description: A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)

Ref Expression
Assertion lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )

Proof

Step Hyp Ref Expression
1 eqidd ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) )
2 eqidd ( 𝑊 ∈ LMod → ( +g𝑊 ) = ( +g𝑊 ) )
3 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 eqid ( +g𝑊 ) = ( +g𝑊 )
6 4 5 lmodcom ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( +g𝑊 ) 𝑦 ) = ( 𝑦 ( +g𝑊 ) 𝑥 ) )
7 1 2 3 6 isabld ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )