Metamath Proof Explorer


Theorem lmodbn0

Description: The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodbn0.b 𝐵 = ( Base ‘ 𝑊 )
Assertion lmodbn0 ( 𝑊 ∈ LMod → 𝐵 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 lmodbn0.b 𝐵 = ( Base ‘ 𝑊 )
2 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
3 1 grpbn0 ( 𝑊 ∈ Grp → 𝐵 ≠ ∅ )
4 2 3 syl ( 𝑊 ∈ LMod → 𝐵 ≠ ∅ )