Metamath Proof Explorer


Theorem lmodcmn

Description: A left module is a commutative monoid under addition. (Contributed by NM, 7-Jan-2015)

Ref Expression
Assertion lmodcmn ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 lmodabl ( 𝑊 ∈ LMod → 𝑊 ∈ Abel )
2 ablcmn ( 𝑊 ∈ Abel → 𝑊 ∈ CMnd )
3 1 2 syl ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd )