Step |
Hyp |
Ref |
Expression |
1 |
|
lmodfopne.t |
⊢ · = ( ·sf ‘ 𝑊 ) |
2 |
|
lmodfopne.a |
⊢ + = ( +𝑓 ‘ 𝑊 ) |
3 |
|
lmodfopne.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
lmodfopne.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
5 |
|
lmodfopne.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
lmodfopne.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
7 |
|
lmodfopne.1 |
⊢ 1 = ( 1r ‘ 𝑆 ) |
8 |
1 2 3 4 5 6 7
|
lmodfopnelem2 |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |
9 |
|
simpl |
⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
11 |
3 10
|
lmod0vcl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
13 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
14 |
3 13 2
|
plusfval |
⊢ ( ( 0 ∈ 𝑉 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( 0 + ( 0g ‘ 𝑊 ) ) = ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
15 |
14
|
eqcomd |
⊢ ( ( 0 ∈ 𝑉 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0 + ( 0g ‘ 𝑊 ) ) ) |
16 |
9 12 15
|
syl2anr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0 + ( 0g ‘ 𝑊 ) ) ) |
17 |
|
oveq |
⊢ ( + = · → ( 0 + ( 0g ‘ 𝑊 ) ) = ( 0 · ( 0g ‘ 𝑊 ) ) ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 + ( 0g ‘ 𝑊 ) ) = ( 0 · ( 0g ‘ 𝑊 ) ) ) |
19 |
16 18
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0 · ( 0g ‘ 𝑊 ) ) ) |
20 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
21 |
20
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑊 ∈ Grp ) |
22 |
3 13 10
|
grprid |
⊢ ( ( 𝑊 ∈ Grp ∧ 0 ∈ 𝑉 ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 0 ) |
23 |
21 9 22
|
syl2an |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 0 ) |
24 |
4 5 6
|
lmod0cl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |
25 |
24 11
|
jca |
⊢ ( 𝑊 ∈ LMod → ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) ) |
28 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
29 |
3 4 5 1 28
|
scafval |
⊢ ( ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( 0 · ( 0g ‘ 𝑊 ) ) = ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
30 |
27 29
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 · ( 0g ‘ 𝑊 ) ) = ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
31 |
24
|
ancli |
⊢ ( 𝑊 ∈ LMod → ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) ) |
34 |
4 28 5 10
|
lmodvs0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) → ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
36 |
|
simpr |
⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → 1 ∈ 𝑉 ) |
37 |
3 13 10
|
grprid |
⊢ ( ( 𝑊 ∈ Grp ∧ 1 ∈ 𝑉 ) → ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 1 ) |
38 |
21 36 37
|
syl2an |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 1 ) |
39 |
4 5 7
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → 1 ∈ 𝐾 ) |
40 |
39
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 1 ∈ 𝐾 ) |
41 |
3 4 5 1 28
|
scafval |
⊢ ( ( 1 ∈ 𝐾 ∧ 1 ∈ 𝑉 ) → ( 1 · 1 ) = ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) ) |
42 |
40 36 41
|
syl2an |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) ) |
43 |
3 4 28 7
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 1 ∈ 𝑉 ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) = 1 ) |
44 |
43
|
ad2ant2rl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) = 1 ) |
45 |
42 44
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = 1 ) |
46 |
|
oveq |
⊢ ( + = · → ( 1 + 1 ) = ( 1 · 1 ) ) |
47 |
46
|
eqcomd |
⊢ ( + = · → ( 1 · 1 ) = ( 1 + 1 ) ) |
48 |
47
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = ( 1 + 1 ) ) |
49 |
36 36
|
jca |
⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |
51 |
3 13 2
|
plusfval |
⊢ ( ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( 1 + 1 ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
52 |
50 51
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 + 1 ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
53 |
48 52
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
54 |
38 45 53
|
3eqtr2d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
55 |
21
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → 𝑊 ∈ Grp ) |
56 |
12
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
57 |
36
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → 1 ∈ 𝑉 ) |
58 |
3 13
|
grplcan |
⊢ ( ( 𝑊 ∈ Grp ∧ ( ( 0g ‘ 𝑊 ) ∈ 𝑉 ∧ 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ↔ ( 0g ‘ 𝑊 ) = 1 ) ) |
59 |
55 56 57 57 58
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ↔ ( 0g ‘ 𝑊 ) = 1 ) ) |
60 |
54 59
|
mpbid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0g ‘ 𝑊 ) = 1 ) |
61 |
30 35 60
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 · ( 0g ‘ 𝑊 ) ) = 1 ) |
62 |
19 23 61
|
3eqtr3rd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → 1 = 0 ) |
63 |
8 62
|
mpdan |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 1 = 0 ) |
64 |
63
|
ex |
⊢ ( 𝑊 ∈ LMod → ( + = · → 1 = 0 ) ) |
65 |
64
|
necon3d |
⊢ ( 𝑊 ∈ LMod → ( 1 ≠ 0 → + ≠ · ) ) |
66 |
65
|
imp |
⊢ ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ · ) |