| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodfopne.t |
⊢ · = ( ·sf ‘ 𝑊 ) |
| 2 |
|
lmodfopne.a |
⊢ + = ( +𝑓 ‘ 𝑊 ) |
| 3 |
|
lmodfopne.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 4 |
|
lmodfopne.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
lmodfopne.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 6 |
3 4 5 1
|
lmodscaf |
⊢ ( 𝑊 ∈ LMod → · : ( 𝐾 × 𝑉 ) ⟶ 𝑉 ) |
| 7 |
6
|
ffnd |
⊢ ( 𝑊 ∈ LMod → · Fn ( 𝐾 × 𝑉 ) ) |
| 8 |
3 2
|
plusffn |
⊢ + Fn ( 𝑉 × 𝑉 ) |
| 9 |
|
fneq1 |
⊢ ( + = · → ( + Fn ( 𝑉 × 𝑉 ) ↔ · Fn ( 𝑉 × 𝑉 ) ) ) |
| 10 |
|
fndmu |
⊢ ( ( · Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) |
| 11 |
10
|
ex |
⊢ ( · Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) |
| 12 |
9 11
|
biimtrdi |
⊢ ( + = · → ( + Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) ) |
| 13 |
12
|
com13 |
⊢ ( · Fn ( 𝐾 × 𝑉 ) → ( + Fn ( 𝑉 × 𝑉 ) → ( + = · → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) ) |
| 14 |
13
|
impcom |
⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( + = · → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) |
| 15 |
3
|
lmodbn0 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ≠ ∅ ) |
| 16 |
|
xp11 |
⊢ ( ( 𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅ ) → ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ↔ ( 𝑉 = 𝐾 ∧ 𝑉 = 𝑉 ) ) ) |
| 17 |
15 15 16
|
syl2anc |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ↔ ( 𝑉 = 𝐾 ∧ 𝑉 = 𝑉 ) ) ) |
| 18 |
17
|
simprbda |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) → 𝑉 = 𝐾 ) |
| 19 |
18
|
expcom |
⊢ ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) → ( 𝑊 ∈ LMod → 𝑉 = 𝐾 ) ) |
| 20 |
14 19
|
syl6 |
⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( + = · → ( 𝑊 ∈ LMod → 𝑉 = 𝐾 ) ) ) |
| 21 |
20
|
com23 |
⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) ) |
| 22 |
21
|
ex |
⊢ ( + Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) ) ) |
| 23 |
22
|
com23 |
⊢ ( + Fn ( 𝑉 × 𝑉 ) → ( 𝑊 ∈ LMod → ( · Fn ( 𝐾 × 𝑉 ) → ( + = · → 𝑉 = 𝐾 ) ) ) ) |
| 24 |
8 23
|
ax-mp |
⊢ ( 𝑊 ∈ LMod → ( · Fn ( 𝐾 × 𝑉 ) → ( + = · → 𝑉 = 𝐾 ) ) ) |
| 25 |
7 24
|
mpd |
⊢ ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾 ) |