Step |
Hyp |
Ref |
Expression |
1 |
|
lmodfopne.t |
⊢ · = ( ·sf ‘ 𝑊 ) |
2 |
|
lmodfopne.a |
⊢ + = ( +𝑓 ‘ 𝑊 ) |
3 |
|
lmodfopne.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
lmodfopne.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
5 |
|
lmodfopne.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
3 4 5 1
|
lmodscaf |
⊢ ( 𝑊 ∈ LMod → · : ( 𝐾 × 𝑉 ) ⟶ 𝑉 ) |
7 |
6
|
ffnd |
⊢ ( 𝑊 ∈ LMod → · Fn ( 𝐾 × 𝑉 ) ) |
8 |
3 2
|
plusffn |
⊢ + Fn ( 𝑉 × 𝑉 ) |
9 |
|
fneq1 |
⊢ ( + = · → ( + Fn ( 𝑉 × 𝑉 ) ↔ · Fn ( 𝑉 × 𝑉 ) ) ) |
10 |
|
fndmu |
⊢ ( ( · Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) |
11 |
10
|
ex |
⊢ ( · Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) |
12 |
9 11
|
syl6bi |
⊢ ( + = · → ( + Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) ) |
13 |
12
|
com13 |
⊢ ( · Fn ( 𝐾 × 𝑉 ) → ( + Fn ( 𝑉 × 𝑉 ) → ( + = · → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) ) |
14 |
13
|
impcom |
⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( + = · → ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) ) |
15 |
3
|
lmodbn0 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ≠ ∅ ) |
16 |
|
xp11 |
⊢ ( ( 𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅ ) → ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ↔ ( 𝑉 = 𝐾 ∧ 𝑉 = 𝑉 ) ) ) |
17 |
15 15 16
|
syl2anc |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ↔ ( 𝑉 = 𝐾 ∧ 𝑉 = 𝑉 ) ) ) |
18 |
17
|
simprbda |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) ) → 𝑉 = 𝐾 ) |
19 |
18
|
expcom |
⊢ ( ( 𝑉 × 𝑉 ) = ( 𝐾 × 𝑉 ) → ( 𝑊 ∈ LMod → 𝑉 = 𝐾 ) ) |
20 |
14 19
|
syl6 |
⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( + = · → ( 𝑊 ∈ LMod → 𝑉 = 𝐾 ) ) ) |
21 |
20
|
com23 |
⊢ ( ( + Fn ( 𝑉 × 𝑉 ) ∧ · Fn ( 𝐾 × 𝑉 ) ) → ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) ) |
22 |
21
|
ex |
⊢ ( + Fn ( 𝑉 × 𝑉 ) → ( · Fn ( 𝐾 × 𝑉 ) → ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) ) ) |
23 |
22
|
com23 |
⊢ ( + Fn ( 𝑉 × 𝑉 ) → ( 𝑊 ∈ LMod → ( · Fn ( 𝐾 × 𝑉 ) → ( + = · → 𝑉 = 𝐾 ) ) ) ) |
24 |
8 23
|
ax-mp |
⊢ ( 𝑊 ∈ LMod → ( · Fn ( 𝐾 × 𝑉 ) → ( + = · → 𝑉 = 𝐾 ) ) ) |
25 |
7 24
|
mpd |
⊢ ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾 ) |