Metamath Proof Explorer


Theorem lmodfopnelem2

Description: Lemma 2 for lmodfopne . (Contributed by AV, 2-Oct-2021)

Ref Expression
Hypotheses lmodfopne.t · = ( ·sf𝑊 )
lmodfopne.a + = ( +𝑓𝑊 )
lmodfopne.v 𝑉 = ( Base ‘ 𝑊 )
lmodfopne.s 𝑆 = ( Scalar ‘ 𝑊 )
lmodfopne.k 𝐾 = ( Base ‘ 𝑆 )
lmodfopne.0 0 = ( 0g𝑆 )
lmodfopne.1 1 = ( 1r𝑆 )
Assertion lmodfopnelem2 ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉 ) )

Proof

Step Hyp Ref Expression
1 lmodfopne.t · = ( ·sf𝑊 )
2 lmodfopne.a + = ( +𝑓𝑊 )
3 lmodfopne.v 𝑉 = ( Base ‘ 𝑊 )
4 lmodfopne.s 𝑆 = ( Scalar ‘ 𝑊 )
5 lmodfopne.k 𝐾 = ( Base ‘ 𝑆 )
6 lmodfopne.0 0 = ( 0g𝑆 )
7 lmodfopne.1 1 = ( 1r𝑆 )
8 1 2 3 4 5 lmodfopnelem1 ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾 )
9 8 ex ( 𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾 ) )
10 4 5 6 lmod0cl ( 𝑊 ∈ LMod → 0𝐾 )
11 4 5 7 lmod1cl ( 𝑊 ∈ LMod → 1𝐾 )
12 10 11 jca ( 𝑊 ∈ LMod → ( 0𝐾1𝐾 ) )
13 eleq2 ( 𝑉 = 𝐾 → ( 0𝑉0𝐾 ) )
14 eleq2 ( 𝑉 = 𝐾 → ( 1𝑉1𝐾 ) )
15 13 14 anbi12d ( 𝑉 = 𝐾 → ( ( 0𝑉1𝑉 ) ↔ ( 0𝐾1𝐾 ) ) )
16 12 15 syl5ibrcom ( 𝑊 ∈ LMod → ( 𝑉 = 𝐾 → ( 0𝑉1𝑉 ) ) )
17 9 16 syld ( 𝑊 ∈ LMod → ( + = · → ( 0𝑉1𝑉 ) ) )
18 17 imp ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉 ) )