Step |
Hyp |
Ref |
Expression |
1 |
|
lmodfopne.t |
⊢ · = ( ·sf ‘ 𝑊 ) |
2 |
|
lmodfopne.a |
⊢ + = ( +𝑓 ‘ 𝑊 ) |
3 |
|
lmodfopne.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
lmodfopne.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
5 |
|
lmodfopne.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
lmodfopne.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
7 |
|
lmodfopne.1 |
⊢ 1 = ( 1r ‘ 𝑆 ) |
8 |
1 2 3 4 5
|
lmodfopnelem1 |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾 ) |
9 |
8
|
ex |
⊢ ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) |
10 |
4 5 6
|
lmod0cl |
⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |
11 |
4 5 7
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → 1 ∈ 𝐾 ) |
12 |
10 11
|
jca |
⊢ ( 𝑊 ∈ LMod → ( 0 ∈ 𝐾 ∧ 1 ∈ 𝐾 ) ) |
13 |
|
eleq2 |
⊢ ( 𝑉 = 𝐾 → ( 0 ∈ 𝑉 ↔ 0 ∈ 𝐾 ) ) |
14 |
|
eleq2 |
⊢ ( 𝑉 = 𝐾 → ( 1 ∈ 𝑉 ↔ 1 ∈ 𝐾 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝑉 = 𝐾 → ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ↔ ( 0 ∈ 𝐾 ∧ 1 ∈ 𝐾 ) ) ) |
16 |
12 15
|
syl5ibrcom |
⊢ ( 𝑊 ∈ LMod → ( 𝑉 = 𝐾 → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) ) |
17 |
9 16
|
syld |
⊢ ( 𝑊 ∈ LMod → ( + = · → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) ) |
18 |
17
|
imp |
⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |