Metamath Proof Explorer


Theorem lmodgrp

Description: A left module is a group. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)

Ref Expression
Assertion lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
2 eqid ( +g𝑊 ) = ( +g𝑊 )
3 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
4 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
5 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
6 eqid ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) )
7 eqid ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) )
8 eqid ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) )
9 1 2 3 4 5 6 7 8 islmod ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ ( Scalar ‘ 𝑊 ) ∈ Ring ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠𝑊 ) ( 𝑤 ( +g𝑊 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ( +g𝑊 ) ( 𝑟 ( ·𝑠𝑊 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠𝑊 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑊 ) 𝑤 ) ( +g𝑊 ) ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠𝑊 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑊 ) ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑤 ) = 𝑤 ) ) ) )
10 9 simp1bi ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )