Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
6 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
1 2 3 4 5 6 7 8
|
islmod |
⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ ( Scalar ‘ 𝑊 ) ∈ Ring ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
10 |
9
|
simp1bi |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |