| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodindp1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lmodindp1.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lmodindp1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lmodindp1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
lmodindp1.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
lmodindp1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
|
lmodindp1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
lmodindp1.q |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 9 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
| 10 |
1 9 4
|
lspsnneg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 11 |
5 6 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) ) |
| 14 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 16 |
1 2 3 9
|
grpinvid1 |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) = 𝑌 ↔ ( 𝑋 + 𝑌 ) = 0 ) ) |
| 17 |
15 6 7 16
|
syl3anc |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) = 𝑌 ↔ ( 𝑋 + 𝑌 ) = 0 ) ) |
| 18 |
17
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) = 𝑌 ) |
| 19 |
18
|
sneqd |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } = { 𝑌 } ) |
| 20 |
19
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 21 |
13 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 22 |
21
|
ex |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) = 0 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 23 |
22
|
necon3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑋 + 𝑌 ) ≠ 0 ) ) |
| 24 |
8 23
|
mpd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) |