Metamath Proof Explorer
Description: Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014)
(Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmodvacl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmodvacl.a |
⊢ + = ( +g ‘ 𝑊 ) |
|
Assertion |
lmodlcan |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvacl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodvacl.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
4 |
1 2
|
grplcan |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |