Metamath Proof Explorer


Theorem lmodlcan

Description: Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvacl.v 𝑉 = ( Base ‘ 𝑊 )
lmodvacl.a + = ( +g𝑊 )
Assertion lmodlcan ( ( 𝑊 ∈ LMod ∧ ( 𝑋𝑉𝑌𝑉𝑍𝑉 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 lmodvacl.v 𝑉 = ( Base ‘ 𝑊 )
2 lmodvacl.a + = ( +g𝑊 )
3 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
4 1 2 grplcan ( ( 𝑊 ∈ Grp ∧ ( 𝑋𝑉𝑌𝑉𝑍𝑉 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) )
5 3 4 sylan ( ( 𝑊 ∈ LMod ∧ ( 𝑋𝑉𝑌𝑉𝑍𝑉 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) )