Step |
Hyp |
Ref |
Expression |
1 |
|
lmodpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
lmodpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
lmodpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
|
lmodpropd.4 |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐾 ) ) |
5 |
|
lmodpropd.5 |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝐿 ) ) |
6 |
|
lmodpropd.6 |
⊢ 𝑃 = ( Base ‘ 𝐹 ) |
7 |
|
lmodpropd.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ 𝐿 ) |
10 |
4
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
11 |
6 10
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
12 |
5
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
13 |
6 12
|
eqtrid |
⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
14 |
4 5
|
eqtr3d |
⊢ ( 𝜑 → ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐿 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( Scalar ‘ 𝐾 ) = ( Scalar ‘ 𝐿 ) ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( +g ‘ ( Scalar ‘ 𝐾 ) ) = ( +g ‘ ( Scalar ‘ 𝐿 ) ) ) |
17 |
16
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ ( Scalar ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝐿 ) ) 𝑦 ) ) |
18 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( .r ‘ ( Scalar ‘ 𝐾 ) ) = ( .r ‘ ( Scalar ‘ 𝐿 ) ) ) |
19 |
18
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( .r ‘ ( Scalar ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( Scalar ‘ 𝐿 ) ) 𝑦 ) ) |
20 |
1 2 8 9 11 13 3 17 19 7
|
lmodprop2d |
⊢ ( 𝜑 → ( 𝐾 ∈ LMod ↔ 𝐿 ∈ LMod ) ) |