Metamath Proof Explorer


Theorem lmodring

Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodring.1 𝐹 = ( Scalar ‘ 𝑊 )
Assertion lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )

Proof

Step Hyp Ref Expression
1 lmodring.1 𝐹 = ( Scalar ‘ 𝑊 )
2 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
3 eqid ( +g𝑊 ) = ( +g𝑊 )
4 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
5 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
6 eqid ( +g𝐹 ) = ( +g𝐹 )
7 eqid ( .r𝐹 ) = ( .r𝐹 )
8 eqid ( 1r𝐹 ) = ( 1r𝐹 )
9 2 3 4 1 5 6 7 8 islmod ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ ( Base ‘ 𝐹 ) ∀ 𝑟 ∈ ( Base ‘ 𝐹 ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠𝑊 ) ( 𝑤 ( +g𝑊 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ( +g𝑊 ) ( 𝑟 ( ·𝑠𝑊 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g𝐹 ) 𝑟 ) ( ·𝑠𝑊 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠𝑊 ) 𝑤 ) ( +g𝑊 ) ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r𝐹 ) 𝑟 ) ( ·𝑠𝑊 ) 𝑤 ) = ( 𝑞 ( ·𝑠𝑊 ) ( 𝑟 ( ·𝑠𝑊 ) 𝑤 ) ) ∧ ( ( 1r𝐹 ) ( ·𝑠𝑊 ) 𝑤 ) = 𝑤 ) ) ) )
10 9 simp2bi ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )