Metamath Proof Explorer


Theorem lmodsca

Description: The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lvecfn.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
Assertion lmodsca ( 𝐹𝑋𝐹 = ( Scalar ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 lvecfn.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
2 1 lmodstr 𝑊 Struct ⟨ 1 , 6 ⟩
3 scaid Scalar = Slot ( Scalar ‘ ndx )
4 snsstp3 { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ }
5 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
6 5 1 sseqtrri { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ⊆ 𝑊
7 4 6 sstri { ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ⊆ 𝑊
8 2 3 7 strfv ( 𝐹𝑋𝐹 = ( Scalar ‘ 𝑊 ) )