Step |
Hyp |
Ref |
Expression |
1 |
|
scaffval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
scaffval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
scaffval.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
4 |
|
scaffval.a |
⊢ ∙ = ( ·sf ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
6 |
1 2 5 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
7 |
6
|
3expb |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
8 |
7
|
ralrimivva |
⊢ ( 𝑊 ∈ LMod → ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
9 |
1 2 3 4 5
|
scaffval |
⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
10 |
9
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ↔ ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ) |
11 |
8 10
|
sylib |
⊢ ( 𝑊 ∈ LMod → ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ) |