| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodsubdi.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lmodsubdi.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | lmodsubdi.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | lmodsubdi.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | lmodsubdi.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 6 |  | lmodsubdi.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 7 |  | lmodsubdi.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 8 |  | lmodsubdi.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 9 |  | lmodsubdi.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( invg ‘ 𝐹 )  =  ( invg ‘ 𝐹 ) | 
						
							| 12 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 13 | 1 10 5 3 2 11 12 | lmodvsubval2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) | 
						
							| 14 | 6 8 9 13 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  =  ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝑋  −  𝑌 ) )  =  ( 𝐴  ·  ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 17 | 3 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Ring ) | 
						
							| 18 | 6 17 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Ring ) | 
						
							| 19 | 4 16 12 11 18 7 | ringnegr | ⊢ ( 𝜑  →  ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) )  =  ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) | 
						
							| 20 | 4 16 12 11 18 7 | ringnegl | ⊢ ( 𝜑  →  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 )  =  ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) | 
						
							| 21 | 19 20 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) )  =  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) )  ·  𝑌 )  =  ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑌 ) ) | 
						
							| 23 |  | ringgrp | ⊢ ( 𝐹  ∈  Ring  →  𝐹  ∈  Grp ) | 
						
							| 24 | 18 23 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Grp ) | 
						
							| 25 | 4 12 | ringidcl | ⊢ ( 𝐹  ∈  Ring  →  ( 1r ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 26 | 18 25 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 27 | 4 11 | grpinvcl | ⊢ ( ( 𝐹  ∈  Grp  ∧  ( 1r ‘ 𝐹 )  ∈  𝐾 )  →  ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 ) | 
						
							| 28 | 24 26 27 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 ) | 
						
							| 29 | 1 3 2 4 16 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ∈  𝐾  ∧  ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾  ∧  𝑌  ∈  𝑉 ) )  →  ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) )  ·  𝑌 )  =  ( 𝐴  ·  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) | 
						
							| 30 | 6 7 28 9 29 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) )  ·  𝑌 )  =  ( 𝐴  ·  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) | 
						
							| 31 | 1 3 2 4 16 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾  ∧  𝐴  ∈  𝐾  ∧  𝑌  ∈  𝑉 ) )  →  ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑌 )  =  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐴  ·  𝑌 ) ) ) | 
						
							| 32 | 6 28 7 9 31 | syl13anc | ⊢ ( 𝜑  →  ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 )  ·  𝑌 )  =  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐴  ·  𝑌 ) ) ) | 
						
							| 33 | 22 30 32 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐴  ·  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) )  =  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐴  ·  𝑌 ) ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴  ·  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐴  ·  𝑌 ) ) ) ) | 
						
							| 35 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 36 | 6 28 9 35 | syl3anc | ⊢ ( 𝜑  →  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 37 | 1 10 3 2 4 | lmodvsdi | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ∈  𝐾  ∧  𝑋  ∈  𝑉  ∧  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 )  ∈  𝑉 ) )  →  ( 𝐴  ·  ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴  ·  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) ) | 
						
							| 38 | 6 7 8 36 37 | syl13anc | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴  ·  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) ) | 
						
							| 39 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 40 | 6 7 8 39 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 41 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝐾  ∧  𝑌  ∈  𝑉 )  →  ( 𝐴  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 42 | 6 7 9 41 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 43 | 1 10 5 3 2 11 12 | lmodvsubval2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑉  ∧  ( 𝐴  ·  𝑌 )  ∈  𝑉 )  →  ( ( 𝐴  ·  𝑋 )  −  ( 𝐴  ·  𝑌 ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐴  ·  𝑌 ) ) ) ) | 
						
							| 44 | 6 40 42 43 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  −  ( 𝐴  ·  𝑌 ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐴  ·  𝑌 ) ) ) ) | 
						
							| 45 | 34 38 44 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  −  ( 𝐴  ·  𝑌 ) )  =  ( 𝐴  ·  ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  𝑌 ) ) ) ) | 
						
							| 46 | 15 45 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝑋  −  𝑌 ) )  =  ( ( 𝐴  ·  𝑋 )  −  ( 𝐴  ·  𝑌 ) ) ) |