| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodsubdir.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lmodsubdir.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | lmodsubdir.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | lmodsubdir.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | lmodsubdir.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 6 |  | lmodsubdir.s | ⊢ 𝑆  =  ( -g ‘ 𝐹 ) | 
						
							| 7 |  | lmodsubdir.w | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | lmodsubdir.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐾 ) | 
						
							| 9 |  | lmodsubdir.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐾 ) | 
						
							| 10 |  | lmodsubdir.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 11 | 3 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Ring ) | 
						
							| 12 | 7 11 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Ring ) | 
						
							| 13 |  | ringgrp | ⊢ ( 𝐹  ∈  Ring  →  𝐹  ∈  Grp ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  𝐹  ∈  Grp ) | 
						
							| 15 |  | eqid | ⊢ ( invg ‘ 𝐹 )  =  ( invg ‘ 𝐹 ) | 
						
							| 16 | 4 15 | grpinvcl | ⊢ ( ( 𝐹  ∈  Grp  ∧  𝐵  ∈  𝐾 )  →  ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ∈  𝐾 ) | 
						
							| 17 | 14 9 16 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ∈  𝐾 ) | 
						
							| 18 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 19 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 20 | 1 18 3 2 4 19 | lmodvsdir | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ∈  𝐾  ∧  ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) )  ·  𝑋 )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ·  𝑋 ) ) ) | 
						
							| 21 | 7 8 17 10 20 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) )  ·  𝑋 )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ·  𝑋 ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 23 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 24 | 4 22 23 15 12 9 | ringnegl | ⊢ ( 𝜑  →  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 )  =  ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 )  ·  𝑋 )  =  ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ·  𝑋 ) ) | 
						
							| 26 | 4 23 | ringidcl | ⊢ ( 𝐹  ∈  Ring  →  ( 1r ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 27 | 12 26 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 28 | 4 15 | grpinvcl | ⊢ ( ( 𝐹  ∈  Grp  ∧  ( 1r ‘ 𝐹 )  ∈  𝐾 )  →  ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 ) | 
						
							| 29 | 14 27 28 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 ) | 
						
							| 30 | 1 3 2 4 22 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾  ∧  𝐵  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 )  ·  𝑋 )  =  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 31 | 7 29 9 10 30 | syl13anc | ⊢ ( 𝜑  →  ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 )  ·  𝑋 )  =  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 32 | 25 31 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ·  𝑋 )  =  ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 )  ·  𝑋 ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐵  ·  𝑋 ) ) ) ) | 
						
							| 34 | 21 33 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) )  ·  𝑋 )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐵  ·  𝑋 ) ) ) ) | 
						
							| 35 | 4 19 15 6 | grpsubval | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( 𝐴 𝑆 𝐵 )  =  ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) ) | 
						
							| 36 | 8 9 35 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 𝑆 𝐵 )  =  ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴 𝑆 𝐵 )  ·  𝑋 )  =  ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) )  ·  𝑋 ) ) | 
						
							| 38 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 39 | 7 8 10 38 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 40 | 1 3 2 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐵  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 41 | 7 9 10 40 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 42 | 1 18 5 3 2 15 23 | lmodvsubval2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑉  ∧  ( 𝐵  ·  𝑋 )  ∈  𝑉 )  →  ( ( 𝐴  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐵  ·  𝑋 ) ) ) ) | 
						
							| 43 | 7 39 41 42 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) )  =  ( ( 𝐴  ·  𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝐵  ·  𝑋 ) ) ) ) | 
						
							| 44 | 34 37 43 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐴 𝑆 𝐵 )  ·  𝑋 )  =  ( ( 𝐴  ·  𝑋 )  −  ( 𝐵  ·  𝑋 ) ) ) |