Step |
Hyp |
Ref |
Expression |
1 |
|
lmodsubdir.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodsubdir.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
lmodsubdir.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
lmodsubdir.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lmodsubdir.m |
⊢ − = ( -g ‘ 𝑊 ) |
6 |
|
lmodsubdir.s |
⊢ 𝑆 = ( -g ‘ 𝐹 ) |
7 |
|
lmodsubdir.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
8 |
|
lmodsubdir.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
9 |
|
lmodsubdir.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
10 |
|
lmodsubdir.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
11 |
3
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
12 |
7 11
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
13 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
15 |
|
eqid |
⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) |
16 |
4 15
|
grpinvcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝐵 ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ∈ 𝐾 ) |
17 |
14 9 16
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ∈ 𝐾 ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
20 |
1 18 3 2 4 19
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) ) |
21 |
7 8 17 10 20
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
23 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
24 |
4 22 23 15 12 9
|
ringnegl |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) = ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) |
26 |
4 23
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
27 |
12 26
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
28 |
4 15
|
grpinvcl |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
29 |
14 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
30 |
1 3 2 4 22
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) |
31 |
7 29 9 10 30
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) |
32 |
25 31
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
34 |
21 33
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
35 |
4 19 15 6
|
grpsubval |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 𝑆 𝐵 ) = ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) ) |
36 |
8 9 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝑆 𝐵 ) = ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) ) |
37 |
36
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 𝑆 𝐵 ) · 𝑋 ) = ( ( 𝐴 ( +g ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ 𝐵 ) ) · 𝑋 ) ) |
38 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
39 |
7 8 10 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
40 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
41 |
7 9 10 40
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 · 𝑋 ) ∈ 𝑉 ) |
42 |
1 18 5 3 2 15 23
|
lmodvsubval2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐵 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
43 |
7 39 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐵 · 𝑋 ) ) ) ) |
44 |
34 37 43
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 𝑆 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |