Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Definition and basic properties
lmodsubeq0
Metamath Proof Explorer
Description: If the difference between two vectors is zero, they are equal.
( hvsubeq0 analog.) (Contributed by NM , 31-Mar-2014) (Revised by Mario Carneiro , 19-Jun-2014)
Ref
Expression
Hypotheses
lmodsubeq0.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
lmodsubeq0.o
⊢ 0 = ( 0g ‘ 𝑊 )
lmodsubeq0.m
⊢ − = ( -g ‘ 𝑊 )
Assertion
lmodsubeq0
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
Proof
Step
Hyp
Ref
Expression
1
lmodsubeq0.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
2
lmodsubeq0.o
⊢ 0 = ( 0g ‘ 𝑊 )
3
lmodsubeq0.m
⊢ − = ( -g ‘ 𝑊 )
4
lmodgrp
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
5
1 2 3
grpsubeq0
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
6
4 5
syl3an1
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )