Metamath Proof Explorer
Description: Subtraction of a vector from itself. ( hvsubid analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmodsubeq0.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmodsubeq0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
|
|
lmodsubeq0.m |
⊢ − = ( -g ‘ 𝑊 ) |
|
Assertion |
lmodsubid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 − 𝐴 ) = 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodsubeq0.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodsubeq0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lmodsubeq0.m |
⊢ − = ( -g ‘ 𝑊 ) |
4 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
5 |
1 2 3
|
grpsubid |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 − 𝐴 ) = 0 ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 − 𝐴 ) = 0 ) |