Step |
Hyp |
Ref |
Expression |
1 |
|
lmodsubvs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodsubvs.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lmodsubvs.m |
⊢ − = ( -g ‘ 𝑊 ) |
4 |
|
lmodsubvs.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
lmodsubvs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
6 |
|
lmodsubvs.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
7 |
|
lmodsubvs.n |
⊢ 𝑁 = ( invg ‘ 𝐹 ) |
8 |
|
lmodsubvs.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
9 |
|
lmodsubvs.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
10 |
|
lmodsubvs.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
11 |
|
lmodsubvs.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
12 |
1 5 4 6
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
13 |
8 9 11 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
14 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
15 |
1 2 3 5 4 7 14
|
lmodvsubval2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐴 · 𝑌 ) ∈ 𝑉 ) → ( 𝑋 − ( 𝐴 · 𝑌 ) ) = ( 𝑋 + ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
16 |
8 10 13 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − ( 𝐴 · 𝑌 ) ) = ( 𝑋 + ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
17 |
5
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
18 |
8 17
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
19 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
21 |
6 14
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
22 |
18 21
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
23 |
6 7
|
grpinvcl |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
26 |
1 5 4 6 25
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
27 |
8 24 9 11 26
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
28 |
6 25 14 7 18 9
|
ringnegl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) = ( 𝑁 ‘ 𝐴 ) ) |
29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) |
30 |
27 29
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) = ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( ( 𝑁 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) = ( 𝑋 + ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) ) |
32 |
16 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 − ( 𝐴 · 𝑌 ) ) = ( 𝑋 + ( ( 𝑁 ‘ 𝐴 ) · 𝑌 ) ) ) |