Metamath Proof Explorer


Theorem lmodvacl

Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvacl.v 𝑉 = ( Base ‘ 𝑊 )
lmodvacl.a + = ( +g𝑊 )
Assertion lmodvacl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 lmodvacl.v 𝑉 = ( Base ‘ 𝑊 )
2 lmodvacl.a + = ( +g𝑊 )
3 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
4 1 2 grpcl ( ( 𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
5 3 4 syl3an1 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )