Metamath Proof Explorer
Description: Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014)
(Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmod4.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmod4.p |
⊢ + = ( +g ‘ 𝑊 ) |
|
|
lmodvaddsub4.m |
⊢ − = ( -g ‘ 𝑊 ) |
|
Assertion |
lmodvaddsub4 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmod4.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmod4.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lmodvaddsub4.m |
⊢ − = ( -g ‘ 𝑊 ) |
4 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
5 |
1 2 3
|
abladdsub4 |
⊢ ( ( 𝑊 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐵 ) ) ) |
6 |
4 5
|
syl3an1 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐵 ) ) ) |