| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvneg1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lmodvneg1.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
| 3 |
|
lmodvneg1.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lmodvneg1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
lmodvneg1.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
| 6 |
|
lmodvneg1.m |
⊢ 𝑀 = ( invg ‘ 𝐹 ) |
| 7 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 8 |
3
|
lmodfgrp |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 10 |
3 9 5
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 12 |
9 6
|
grpinvcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ) |
| 13 |
8 11 12
|
syl2an2r |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 15 |
1 3 4 9
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ) |
| 16 |
7 13 14 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 19 |
1 17 18
|
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( ( 𝑀 ‘ 1 ) · 𝑋 ) ) |
| 20 |
16 19
|
syldan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( ( 𝑀 ‘ 1 ) · 𝑋 ) ) |
| 21 |
1 2
|
lmodvnegcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) |
| 22 |
1 17
|
lmodass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) ) → ( ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 23 |
7 16 14 21 22
|
syl13anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 24 |
1 3 4 5
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 25 |
24
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ) |
| 26 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 27 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 28 |
9 26 27 6
|
grplinv |
⊢ ( ( 𝐹 ∈ Grp ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) = ( 0g ‘ 𝐹 ) ) |
| 29 |
8 11 28
|
syl2an2r |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) = ( 0g ‘ 𝐹 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( 0g ‘ 𝐹 ) · 𝑋 ) ) |
| 31 |
1 17 3 4 9 26
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ) |
| 32 |
7 13 11 14 31
|
syl13anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ) |
| 33 |
1 3 4 27 18
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 34 |
30 32 33
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 35 |
25 34
|
eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 36 |
35
|
oveq1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 37 |
23 36
|
eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 38 |
1 17 18 2
|
lmodvnegid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 40 |
1 17 18
|
lmod0vlid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) → ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 41 |
21 40
|
syldan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 42 |
37 39 41
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 43 |
20 42
|
eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |