Metamath Proof Explorer
Description: Closure of vector negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmodvnegcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmodvnegcl.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
|
Assertion |
lmodvnegcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvnegcl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodvnegcl.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
3 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
4 |
1 2
|
grpinvcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) |