Metamath Proof Explorer
Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmodvnegid.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmodvnegid.p |
⊢ + = ( +g ‘ 𝑊 ) |
|
|
lmodvnegid.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
|
|
lmodvnegid.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
|
Assertion |
lmodvnegid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvnegid.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodvnegid.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lmodvnegid.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lmodvnegid.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
5 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
6 |
1 2 3 4
|
grprinv |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |