Metamath Proof Explorer


Theorem lmodvnegid

Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvnegid.v 𝑉 = ( Base ‘ 𝑊 )
lmodvnegid.p + = ( +g𝑊 )
lmodvnegid.z 0 = ( 0g𝑊 )
lmodvnegid.n 𝑁 = ( invg𝑊 )
Assertion lmodvnegid ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑋 + ( 𝑁𝑋 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 lmodvnegid.v 𝑉 = ( Base ‘ 𝑊 )
2 lmodvnegid.p + = ( +g𝑊 )
3 lmodvnegid.z 0 = ( 0g𝑊 )
4 lmodvnegid.n 𝑁 = ( invg𝑊 )
5 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
6 1 2 3 4 grprinv ( ( 𝑊 ∈ Grp ∧ 𝑋𝑉 ) → ( 𝑋 + ( 𝑁𝑋 ) ) = 0 )
7 5 6 sylan ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑋 + ( 𝑁𝑋 ) ) = 0 )