Metamath Proof Explorer
		
		
		
		Description:  Cancellation law for vector subtraction ( npcan analog).  (Contributed by NM, 19-Apr-2014)  (Revised by Mario Carneiro, 19-Jun-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lmod4.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
					
						|  |  | lmod4.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
					
						|  |  | lmodvaddsub4.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
				
					|  | Assertion | lmodvnpcan | ⊢  ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝐴  −  𝐵 )  +  𝐵 )  =  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod4.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lmod4.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lmodvaddsub4.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 4 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 5 | 1 2 3 | grpnpcan | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝐴  −  𝐵 )  +  𝐵 )  =  𝐴 ) | 
						
							| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝐴  −  𝐵 )  +  𝐵 )  =  𝐴 ) |