| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvs1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lmodvs1.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lmodvs1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
lmodvs1.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
| 5 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 7 |
2 6 4
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 13 |
1 10 3 2 6 11 12 4
|
lmodlema |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1 · 𝑋 ) ∈ 𝑉 ∧ ( 1 · ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ∧ ( ( 1 ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ) ∧ ( ( ( 1 ( .r ‘ 𝐹 ) 1 ) · 𝑋 ) = ( 1 · ( 1 · 𝑋 ) ) ∧ ( 1 · 𝑋 ) = 𝑋 ) ) ) |
| 14 |
13
|
simprrd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 15 |
5 8 8 9 9 14
|
syl122anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |