Metamath Proof Explorer


Theorem lmodvsca

Description: The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
Assertion lmodvsca ( ·𝑋· = ( ·𝑠𝑊 ) )

Proof

Step Hyp Ref Expression
1 lmodstr.w 𝑊 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
2 1 lmodstr 𝑊 Struct ⟨ 1 , 6 ⟩
3 vscaid ·𝑠 = Slot ( ·𝑠 ‘ ndx )
4 ssun2 { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐹 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
5 4 1 sseqtrri { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } ⊆ 𝑊
6 2 3 5 strfv ( ·𝑋· = ( ·𝑠𝑊 ) )