Metamath Proof Explorer


Theorem lmodvscld

Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses lmodvscld.v 𝑉 = ( Base ‘ 𝑊 )
lmodvscld.f 𝐹 = ( Scalar ‘ 𝑊 )
lmodvscld.s · = ( ·𝑠𝑊 )
lmodvscld.k 𝐾 = ( Base ‘ 𝐹 )
lmodvscld.w ( 𝜑𝑊 ∈ LMod )
lmodvscld.r ( 𝜑𝑅𝐾 )
lmodvscld.x ( 𝜑𝑋𝑉 )
Assertion lmodvscld ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 lmodvscld.v 𝑉 = ( Base ‘ 𝑊 )
2 lmodvscld.f 𝐹 = ( Scalar ‘ 𝑊 )
3 lmodvscld.s · = ( ·𝑠𝑊 )
4 lmodvscld.k 𝐾 = ( Base ‘ 𝐹 )
5 lmodvscld.w ( 𝜑𝑊 ∈ LMod )
6 lmodvscld.r ( 𝜑𝑅𝐾 )
7 lmodvscld.x ( 𝜑𝑋𝑉 )
8 1 2 3 4 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 )
9 5 6 7 8 syl3anc ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 )