Metamath Proof Explorer
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
lmodvscld.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmodvscld.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
lmodvscld.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
|
|
lmodvscld.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
|
lmodvscld.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
|
|
lmodvscld.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) |
|
|
lmodvscld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
Assertion |
lmodvscld |
⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvscld.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmodvscld.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
lmodvscld.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
lmodvscld.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
lmodvscld.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
6 |
|
lmodvscld.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) |
7 |
|
lmodvscld.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
8 |
1 2 3 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |