| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodvsinv.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lmodvsinv.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | lmodvsinv.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | lmodvsinv.n | ⊢ 𝑁  =  ( invg ‘ 𝑊 ) | 
						
							| 5 |  | lmodvsinv.m | ⊢ 𝑀  =  ( invg ‘ 𝐹 ) | 
						
							| 6 |  | lmodvsinv.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  𝑊  ∈  LMod ) | 
						
							| 8 | 2 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Ring ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  𝐹  ∈  Ring ) | 
						
							| 10 |  | ringgrp | ⊢ ( 𝐹  ∈  Ring  →  𝐹  ∈  Grp ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  𝐹  ∈  Grp ) | 
						
							| 12 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 13 | 6 12 | ringidcl | ⊢ ( 𝐹  ∈  Ring  →  ( 1r ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 14 | 9 13 | syl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( 1r ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 15 | 6 5 | grpinvcl | ⊢ ( ( 𝐹  ∈  Grp  ∧  ( 1r ‘ 𝐹 )  ∈  𝐾 )  →  ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 ) | 
						
							| 16 | 11 14 15 | syl2anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 ) | 
						
							| 17 |  | simp2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  𝑅  ∈  𝐾 ) | 
						
							| 18 |  | simp3 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 19 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 20 | 1 2 3 6 19 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 ) )  →  ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 21 | 7 16 17 18 20 | syl13anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 22 | 6 19 12 5 9 17 | ringnegl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  =  ( 𝑀 ‘ 𝑅 ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑀 ‘ 𝑅 )  ·  𝑋 ) ) | 
						
							| 24 | 1 2 3 6 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( 𝑅  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 25 | 1 4 2 3 12 5 | lmodvneg1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑅  ·  𝑋 )  ∈  𝐵 )  →  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) )  =  ( 𝑁 ‘ ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 26 | 7 24 25 | syl2anc | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) )  =  ( 𝑁 ‘ ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 27 | 21 23 26 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑀 ‘ 𝑅 )  ·  𝑋 )  =  ( 𝑁 ‘ ( 𝑅  ·  𝑋 ) ) ) |