| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodvsmmulgdi.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lmodvsmmulgdi.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | lmodvsmmulgdi.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | lmodvsmmulgdi.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | lmodvsmmulgdi.p | ⊢  ↑   =  ( .g ‘ 𝑊 ) | 
						
							| 6 |  | lmodvsmmulgdi.e | ⊢ 𝐸  =  ( .g ‘ 𝐹 ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( 0  ↑  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥 𝐸 𝐶 )  =  ( 0 𝐸 𝐶 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  =  ( ( 0 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  ↔  ( 0  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 0 𝐸 𝐶 )  ·  𝑋 ) ) ) | 
						
							| 11 | 10 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 ) )  ↔  ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 0  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 0 𝐸 𝐶 )  ·  𝑋 ) ) ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 𝐸 𝐶 )  =  ( 𝑦 𝐸 𝐶 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  ↔  ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 ) )  ↔  ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥 𝐸 𝐶 )  =  ( ( 𝑦  +  1 ) 𝐸 𝐶 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  ↔  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 ) )  ↔  ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( 𝑁  ↑  ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥 𝐸 𝐶 )  =  ( 𝑁 𝐸 𝐶 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  =  ( ( 𝑁 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 25 | 22 24 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 )  ↔  ( 𝑁  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑁 𝐸 𝐶 )  ·  𝑋 ) ) ) | 
						
							| 26 | 25 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑥  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑥 𝐸 𝐶 )  ·  𝑋 ) )  ↔  ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑁  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑁 𝐸 𝐶 )  ·  𝑋 ) ) ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  𝑊  ∈  LMod ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  𝑉 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  𝑋  ∈  𝑉 ) | 
						
							| 30 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 31 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 32 | 1 2 3 30 31 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 33 | 27 29 32 | syl2anc | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 34 |  | simpl | ⊢ ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  𝐶  ∈  𝐾 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  𝐶  ∈  𝐾 ) | 
						
							| 36 | 4 30 6 | mulg0 | ⊢ ( 𝐶  ∈  𝐾  →  ( 0 𝐸 𝐶 )  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 0 𝐸 𝐶 )  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( ( 0 𝐸 𝐶 )  ·  𝑋 )  =  ( ( 0g ‘ 𝐹 )  ·  𝑋 ) ) | 
						
							| 39 | 1 2 3 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝐶  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 40 | 27 35 29 39 | syl3anc | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝐶  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 41 | 1 31 5 | mulg0 | ⊢ ( ( 𝐶  ·  𝑋 )  ∈  𝑉  →  ( 0  ↑  ( 𝐶  ·  𝑋 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 0  ↑  ( 𝐶  ·  𝑋 ) )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 43 | 33 38 42 | 3eqtr4rd | ⊢ ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 0  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 0 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 44 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 45 | 44 | grpmndd | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Mnd ) | 
						
							| 46 | 45 | ad2antll | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  𝑊  ∈  Mnd ) | 
						
							| 47 |  | simpl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 48 | 40 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( 𝐶  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 49 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 50 | 1 5 49 | mulgnn0p1 | ⊢ ( ( 𝑊  ∈  Mnd  ∧  𝑦  ∈  ℕ0  ∧  ( 𝐶  ·  𝑋 )  ∈  𝑉 )  →  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 51 | 46 47 48 50 | syl3anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  ∧  ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) )  →  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 53 |  | oveq1 | ⊢ ( ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 )  →  ( ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 54 | 27 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  𝑊  ∈  LMod ) | 
						
							| 55 | 2 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Ring ) | 
						
							| 56 |  | ringmnd | ⊢ ( 𝐹  ∈  Ring  →  𝐹  ∈  Mnd ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Mnd ) | 
						
							| 58 | 57 | ad2antll | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  𝐹  ∈  Mnd ) | 
						
							| 59 |  | simprll | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  𝐶  ∈  𝐾 ) | 
						
							| 60 | 4 6 58 47 59 | mulgnn0cld | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( 𝑦 𝐸 𝐶 )  ∈  𝐾 ) | 
						
							| 61 | 29 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 62 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 63 | 1 49 2 3 4 62 | lmodvsdir | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( 𝑦 𝐸 𝐶 )  ∈  𝐾  ∧  𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 )  ·  𝑋 )  =  ( ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 64 | 54 60 59 61 63 | syl13anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 )  ·  𝑋 )  =  ( ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) ) ) | 
						
							| 65 | 4 6 62 | mulgnn0p1 | ⊢ ( ( 𝐹  ∈  Mnd  ∧  𝑦  ∈  ℕ0  ∧  𝐶  ∈  𝐾 )  →  ( ( 𝑦  +  1 ) 𝐸 𝐶 )  =  ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) ) | 
						
							| 66 | 58 47 59 65 | syl3anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( ( 𝑦  +  1 ) 𝐸 𝐶 )  =  ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 ) ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 )  =  ( ( 𝑦  +  1 ) 𝐸 𝐶 ) ) | 
						
							| 68 | 67 | oveq1d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( ( ( 𝑦 𝐸 𝐶 ) ( +g ‘ 𝐹 ) 𝐶 )  ·  𝑋 )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 69 | 64 68 | eqtr3d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  →  ( ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 70 | 53 69 | sylan9eqr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  ∧  ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) )  →  ( ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) ) ( +g ‘ 𝑊 ) ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 71 | 52 70 | eqtrd | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod ) )  ∧  ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) )  →  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) | 
						
							| 72 | 71 | exp31 | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 )  →  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) ) ) | 
						
							| 73 | 72 | a2d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑦  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 𝐶 )  ·  𝑋 ) )  →  ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( ( 𝑦  +  1 )  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 ) 𝐸 𝐶 )  ·  𝑋 ) ) ) ) | 
						
							| 74 | 11 16 21 26 43 73 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝐶  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  LMod )  →  ( 𝑁  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑁 𝐸 𝐶 )  ·  𝑋 ) ) ) | 
						
							| 75 | 74 | exp4c | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐶  ∈  𝐾  →  ( 𝑋  ∈  𝑉  →  ( 𝑊  ∈  LMod  →  ( 𝑁  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑁 𝐸 𝐶 )  ·  𝑋 ) ) ) ) ) | 
						
							| 76 | 75 | 3imp21 | ⊢ ( ( 𝐶  ∈  𝐾  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑉 )  →  ( 𝑊  ∈  LMod  →  ( 𝑁  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑁 𝐸 𝐶 )  ·  𝑋 ) ) ) | 
						
							| 77 | 76 | impcom | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐶  ∈  𝐾  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑉 ) )  →  ( 𝑁  ↑  ( 𝐶  ·  𝑋 ) )  =  ( ( 𝑁 𝐸 𝐶 )  ·  𝑋 ) ) |