| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvsneg.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
lmodvsneg.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lmodvsneg.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
lmodvsneg.n |
⊢ 𝑁 = ( invg ‘ 𝑊 ) |
| 5 |
|
lmodvsneg.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
lmodvsneg.m |
⊢ 𝑀 = ( invg ‘ 𝐹 ) |
| 7 |
|
lmodvsneg.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 8 |
|
lmodvsneg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
lmodvsneg.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) |
| 10 |
2
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 11 |
7 10
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 12 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 14 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 15 |
5 14
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 16 |
11 15
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 17 |
5 6
|
grpinvcl |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 18 |
13 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 19 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 20 |
1 2 3 5 19
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) ) |
| 21 |
7 18 9 8 20
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) ) |
| 22 |
5 19 14 6 11 9
|
ringnegl |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) = ( 𝑀 ‘ 𝑅 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) ) |
| 24 |
1 2 3 5
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 · 𝑋 ) ∈ 𝐵 ) |
| 25 |
7 9 8 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝐵 ) |
| 26 |
1 4 2 3 14 6
|
lmodvneg1 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |
| 27 |
7 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |
| 28 |
21 23 27
|
3eqtr3rd |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) ) |