| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lmodvsneg.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							lmodvsneg.f | 
							⊢ 𝐹  =  ( Scalar ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							lmodvsneg.s | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							lmodvsneg.n | 
							⊢ 𝑁  =  ( invg ‘ 𝑊 )  | 
						
						
							| 5 | 
							
								
							 | 
							lmodvsneg.k | 
							⊢ 𝐾  =  ( Base ‘ 𝐹 )  | 
						
						
							| 6 | 
							
								
							 | 
							lmodvsneg.m | 
							⊢ 𝑀  =  ( invg ‘ 𝐹 )  | 
						
						
							| 7 | 
							
								
							 | 
							lmodvsneg.w | 
							⊢ ( 𝜑  →  𝑊  ∈  LMod )  | 
						
						
							| 8 | 
							
								
							 | 
							lmodvsneg.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							lmodvsneg.r | 
							⊢ ( 𝜑  →  𝑅  ∈  𝐾 )  | 
						
						
							| 10 | 
							
								2
							 | 
							lmodring | 
							⊢ ( 𝑊  ∈  LMod  →  𝐹  ∈  Ring )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹  ∈  Ring )  | 
						
						
							| 12 | 
							
								
							 | 
							ringgrp | 
							⊢ ( 𝐹  ∈  Ring  →  𝐹  ∈  Grp )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹  ∈  Grp )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 )  | 
						
						
							| 15 | 
							
								5 14
							 | 
							ringidcl | 
							⊢ ( 𝐹  ∈  Ring  →  ( 1r ‘ 𝐹 )  ∈  𝐾 )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 1r ‘ 𝐹 )  ∈  𝐾 )  | 
						
						
							| 17 | 
							
								5 6
							 | 
							grpinvcl | 
							⊢ ( ( 𝐹  ∈  Grp  ∧  ( 1r ‘ 𝐹 )  ∈  𝐾 )  →  ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 )  | 
						
						
							| 18 | 
							
								13 16 17
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 )  | 
						
						
							| 20 | 
							
								1 2 3 5 19
							 | 
							lmodvsass | 
							⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 ) )  →  ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) ) )  | 
						
						
							| 21 | 
							
								7 18 9 8 20
							 | 
							syl13anc | 
							⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) ) )  | 
						
						
							| 22 | 
							
								5 19 14 6 11 9
							 | 
							ringnegl | 
							⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  =  ( 𝑀 ‘ 𝑅 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑀 ‘ 𝑅 )  ·  𝑋 ) )  | 
						
						
							| 24 | 
							
								1 2 3 5
							 | 
							lmodvscl | 
							⊢ ( ( 𝑊  ∈  LMod  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝐵 )  →  ( 𝑅  ·  𝑋 )  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								7 9 8 24
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑅  ·  𝑋 )  ∈  𝐵 )  | 
						
						
							| 26 | 
							
								1 4 2 3 14 6
							 | 
							lmodvneg1 | 
							⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑅  ·  𝑋 )  ∈  𝐵 )  →  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) )  =  ( 𝑁 ‘ ( 𝑅  ·  𝑋 ) ) )  | 
						
						
							| 27 | 
							
								7 25 26
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) )  ·  ( 𝑅  ·  𝑋 ) )  =  ( 𝑁 ‘ ( 𝑅  ·  𝑋 ) ) )  | 
						
						
							| 28 | 
							
								21 23 27
							 | 
							3eqtr3rd | 
							⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑅  ·  𝑋 ) )  =  ( ( 𝑀 ‘ 𝑅 )  ·  𝑋 ) )  |