| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodvsubval2.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lmodvsubval2.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lmodvsubval2.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 4 |  | lmodvsubval2.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | lmodvsubval2.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | lmodvsubval2.n | ⊢ 𝑁  =  ( invg ‘ 𝐹 ) | 
						
							| 7 |  | lmodvsubval2.u | ⊢  1   =  ( 1r ‘ 𝐹 ) | 
						
							| 8 |  | eqid | ⊢ ( invg ‘ 𝑊 )  =  ( invg ‘ 𝑊 ) | 
						
							| 9 | 1 2 8 3 | grpsubval | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴  +  ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴  +  ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) | 
						
							| 11 | 1 8 4 5 7 6 | lmodvneg1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑁 ‘  1  )  ·  𝐵 )  =  ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) | 
						
							| 12 | 11 | 3adant2 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑁 ‘  1  )  ·  𝐵 )  =  ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  +  ( ( 𝑁 ‘  1  )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( invg ‘ 𝑊 ) ‘ 𝐵 ) ) ) | 
						
							| 14 | 10 13 | eqtr4d | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴  +  ( ( 𝑁 ‘  1  )  ·  𝐵 ) ) ) |