Metamath Proof Explorer


Theorem lmrcl

Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015)

Ref Expression
Assertion lmrcl ( 𝐹 ( ⇝𝑡𝐽 ) 𝑃𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 df-lm 𝑡 = ( 𝑗 ∈ Top ↦ { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑗pm ℂ ) ∧ 𝑥 𝑗 ∧ ∀ 𝑢𝑗 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
2 1 dmmptss dom ⇝𝑡 ⊆ Top
3 df-br ( 𝐹 ( ⇝𝑡𝐽 ) 𝑃 ↔ ⟨ 𝐹 , 𝑃 ⟩ ∈ ( ⇝𝑡𝐽 ) )
4 elfvdm ( ⟨ 𝐹 , 𝑃 ⟩ ∈ ( ⇝𝑡𝐽 ) → 𝐽 ∈ dom ⇝𝑡 )
5 3 4 sylbi ( 𝐹 ( ⇝𝑡𝐽 ) 𝑃𝐽 ∈ dom ⇝𝑡 )
6 2 5 sselid ( 𝐹 ( ⇝𝑡𝐽 ) 𝑃𝐽 ∈ Top )