Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lmrcl | ⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 → 𝐽 ∈ Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lm | ⊢ ⇝𝑡 = ( 𝑗 ∈ Top ↦ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) | |
2 | 1 | dmmptss | ⊢ dom ⇝𝑡 ⊆ Top |
3 | df-br | ⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) ) | |
4 | elfvdm | ⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( ⇝𝑡 ‘ 𝐽 ) → 𝐽 ∈ dom ⇝𝑡 ) | |
5 | 3 4 | sylbi | ⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 → 𝐽 ∈ dom ⇝𝑡 ) |
6 | 2 5 | sselid | ⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 → 𝐽 ∈ Top ) |