Step |
Hyp |
Ref |
Expression |
1 |
|
lmres.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
lmres.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
3 |
|
lmres.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
6 |
|
cnex |
⊢ ℂ ∈ V |
7 |
|
ssid |
⊢ 𝑋 ⊆ 𝑋 |
8 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
9 |
|
zsscn |
⊢ ℤ ⊆ ℂ |
10 |
8 9
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ |
11 |
|
pmss12g |
⊢ ( ( ( 𝑋 ⊆ 𝑋 ∧ ( ℤ≥ ‘ 𝑀 ) ⊆ ℂ ) ∧ ( 𝑋 ∈ 𝐽 ∧ ℂ ∈ V ) ) → ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ⊆ ( 𝑋 ↑pm ℂ ) ) |
12 |
7 10 11
|
mpanl12 |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ ℂ ∈ V ) → ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ⊆ ( 𝑋 ↑pm ℂ ) ) |
13 |
5 6 12
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ⊆ ( 𝑋 ↑pm ℂ ) ) |
14 |
|
fvex |
⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V |
15 |
|
pmresg |
⊢ ( ( ( ℤ≥ ‘ 𝑀 ) ∈ V ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ) |
16 |
14 2 15
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ( ℤ≥ ‘ 𝑀 ) ) ) |
17 |
13 16
|
sseldd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ) |
18 |
17 2
|
2thd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ↔ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) ) |
19 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
20 |
19
|
uztrn2 |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
21 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ dom 𝐹 ) |
22 |
21
|
elin2 |
⊢ ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ dom 𝐹 ) ) |
23 |
22
|
baib |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ↔ 𝑘 ∈ dom 𝐹 ) ) |
24 |
|
fvres |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
26 |
23 25
|
anbi12d |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
27 |
20 26
|
syl |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
28 |
27
|
ralbidva |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
29 |
28
|
rexbiia |
⊢ ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
30 |
29
|
imbi2i |
⊢ ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
31 |
30
|
ralbii |
⊢ ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
33 |
18 32
|
3anbi13d |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
34 |
1 19 3
|
lmbr2 |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
35 |
1 19 3
|
lmbr2 |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) ) |
36 |
33 34 35
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |