Step |
Hyp |
Ref |
Expression |
1 |
|
lmss.1 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) |
2 |
|
lmss.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
lmss.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
4 |
|
lmss.4 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
5 |
|
lmss.5 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑌 ) |
6 |
|
lmss.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
7 |
|
lmss.7 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑌 ) |
8 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
9 |
4 8
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
10 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
12 |
|
lmfss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ∪ 𝐽 ) ) |
13 |
9 12
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ∪ 𝐽 ) ) |
14 |
|
rnss |
⊢ ( 𝐹 ⊆ ( ℂ × ∪ 𝐽 ) → ran 𝐹 ⊆ ran ( ℂ × ∪ 𝐽 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ran 𝐹 ⊆ ran ( ℂ × ∪ 𝐽 ) ) |
16 |
|
rnxpss |
⊢ ran ( ℂ × ∪ 𝐽 ) ⊆ ∪ 𝐽 |
17 |
15 16
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ran 𝐹 ⊆ ∪ 𝐽 ) |
18 |
11 17
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) |
19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ) |
20 |
|
resttopon2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
21 |
9 3 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
22 |
1 21
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
23 |
|
lmcl |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) |
24 |
22 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) |
25 |
24
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
26 |
|
lmfss |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
27 |
22 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → 𝐹 ⊆ ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
28 |
|
rnss |
⊢ ( 𝐹 ⊆ ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
30 |
|
rnxpss |
⊢ ran ( ℂ × ( 𝑌 ∩ ∪ 𝐽 ) ) ⊆ ( 𝑌 ∩ ∪ 𝐽 ) |
31 |
29 30
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ran 𝐹 ⊆ ( 𝑌 ∩ ∪ 𝐽 ) ) |
32 |
|
inss2 |
⊢ ( 𝑌 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 |
33 |
31 32
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ran 𝐹 ⊆ ∪ 𝐽 ) |
34 |
25 33
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) |
35 |
34
|
ex |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 → ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ) |
36 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑃 ∈ ∪ 𝐽 ) |
37 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑃 ∈ 𝑌 ) |
38 |
37 36
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) |
39 |
36 38
|
2thd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑃 ∈ ∪ 𝐽 ↔ 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
40 |
1
|
eleq2i |
⊢ ( 𝑣 ∈ 𝐾 ↔ 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ) |
41 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐽 ∈ Top ) |
42 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑌 ∈ 𝑉 ) |
43 |
|
elrest |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) ) |
44 |
41 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) ) |
45 |
44
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑣 ∈ ( 𝐽 ↾t 𝑌 ) ) → ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) |
46 |
40 45
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑣 ∈ 𝐾 ) → ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) |
47 |
|
r19.29r |
⊢ ( ( ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
48 |
37
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑃 ∈ 𝑢 ↔ ( 𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌 ) ) ) |
49 |
|
elin |
⊢ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌 ) ) |
50 |
48 49
|
bitr4di |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝑃 ∈ 𝑢 ↔ 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
51 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
52 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 : 𝑍 ⟶ 𝑌 ) |
53 |
52
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑌 ) |
54 |
53
|
biantrud |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑌 ) ) ) |
55 |
|
elin |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑌 ) ) |
56 |
54 55
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
57 |
51 56
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
58 |
57
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
59 |
58
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
60 |
59
|
rexbidva |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
61 |
50 60
|
imbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
63 |
62
|
biimpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
64 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( 𝑃 ∈ 𝑣 ↔ 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
65 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
66 |
65
|
rexralbidv |
⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) |
67 |
64 66
|
imbi12d |
⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ↔ ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
68 |
67
|
imbi2d |
⊢ ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ↔ ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) ) |
69 |
63 68
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑣 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
70 |
69
|
impd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
71 |
70
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∃ 𝑢 ∈ 𝐽 ( 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
72 |
47 71
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ( ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
73 |
72
|
expdimp |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ ∃ 𝑢 ∈ 𝐽 𝑣 = ( 𝑢 ∩ 𝑌 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
74 |
46 73
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑣 ∈ 𝐾 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
75 |
74
|
ralrimdva |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
76 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → 𝐽 ∈ Top ) |
77 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → 𝑌 ∈ 𝑉 ) |
78 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → 𝑢 ∈ 𝐽 ) |
79 |
|
elrestr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉 ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
80 |
76 77 78 79
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
81 |
80 1
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑢 ∩ 𝑌 ) ∈ 𝐾 ) |
82 |
67
|
rspcv |
⊢ ( ( 𝑢 ∩ 𝑌 ) ∈ 𝐾 → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
83 |
81 82
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑃 ∈ ( 𝑢 ∩ 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑢 ∩ 𝑌 ) ) ) ) |
84 |
83 62
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
85 |
84
|
ralrimdva |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) → ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
86 |
75 85
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ↔ ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
87 |
39 86
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( ( 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ↔ ( 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
88 |
41 8
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
89 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝑀 ∈ ℤ ) |
90 |
52
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 Fn 𝑍 ) |
91 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ran 𝐹 ⊆ ∪ 𝐽 ) |
92 |
|
df-f |
⊢ ( 𝐹 : 𝑍 ⟶ ∪ 𝐽 ↔ ( 𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) |
93 |
90 91 92
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 : 𝑍 ⟶ ∪ 𝐽 ) |
94 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
95 |
88 2 89 93 94
|
lmbrf |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑃 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
96 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐾 ∈ ( TopOn ‘ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
97 |
52
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ran 𝐹 ⊆ 𝑌 ) |
98 |
97 91
|
ssind |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ran 𝐹 ⊆ ( 𝑌 ∩ ∪ 𝐽 ) ) |
99 |
|
df-f |
⊢ ( 𝐹 : 𝑍 ⟶ ( 𝑌 ∩ ∪ 𝐽 ) ↔ ( 𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ ( 𝑌 ∩ ∪ 𝐽 ) ) ) |
100 |
90 98 99
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → 𝐹 : 𝑍 ⟶ ( 𝑌 ∩ ∪ 𝐽 ) ) |
101 |
96 2 89 100 94
|
lmbrf |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ↔ ( 𝑃 ∈ ( 𝑌 ∩ ∪ 𝐽 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑃 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
102 |
87 95 101
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) ) |
103 |
102
|
ex |
⊢ ( 𝜑 → ( ( 𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) ) ) |
104 |
19 35 103
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ( ⇝𝑡 ‘ 𝐾 ) 𝑃 ) ) |