Metamath Proof Explorer


Theorem lmxrge0

Description: Express "sequence F converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017)

Ref Expression
Hypotheses lmxrge0.j 𝐽 = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
lmxrge0.6 ( 𝜑𝐹 : ℕ ⟶ ( 0 [,] +∞ ) )
lmxrge0.7 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) = 𝐴 )
Assertion lmxrge0 ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 lmxrge0.j 𝐽 = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
2 lmxrge0.6 ( 𝜑𝐹 : ℕ ⟶ ( 0 [,] +∞ ) )
3 lmxrge0.7 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) = 𝐴 )
4 eqid ( ℝ*𝑠s ( 0 [,] +∞ ) ) = ( ℝ*𝑠s ( 0 [,] +∞ ) )
5 xrstopn ( ordTop ‘ ≤ ) = ( TopOpen ‘ ℝ*𝑠 )
6 4 5 resstopn ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
7 1 6 eqtr4i 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
8 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
9 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
10 resttopon ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) )
11 8 9 10 mp2an ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) )
12 7 11 eqeltri 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) )
13 12 a1i ( 𝜑𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) )
14 nnuz ℕ = ( ℤ ‘ 1 )
15 1zzd ( 𝜑 → 1 ∈ ℤ )
16 13 14 15 2 3 lmbrf ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) +∞ ↔ ( +∞ ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) ) )
17 0xr 0 ∈ ℝ*
18 pnfxr +∞ ∈ ℝ*
19 0lepnf 0 ≤ +∞
20 ubicc2 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) )
21 17 18 19 20 mp3an +∞ ∈ ( 0 [,] +∞ )
22 21 biantrur ( ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ↔ ( +∞ ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) )
23 16 22 bitr4di ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) +∞ ↔ ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) )
24 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
25 18 a1i ( 𝑥 ∈ ℝ → +∞ ∈ ℝ* )
26 ltpnf ( 𝑥 ∈ ℝ → 𝑥 < +∞ )
27 ubioc1 ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 < +∞ ) → +∞ ∈ ( 𝑥 (,] +∞ ) )
28 24 25 26 27 syl3anc ( 𝑥 ∈ ℝ → +∞ ∈ ( 𝑥 (,] +∞ ) )
29 0ltpnf 0 < +∞
30 ubioc1 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → +∞ ∈ ( 0 (,] +∞ ) )
31 17 18 29 30 mp3an +∞ ∈ ( 0 (,] +∞ )
32 28 31 jctir ( 𝑥 ∈ ℝ → ( +∞ ∈ ( 𝑥 (,] +∞ ) ∧ +∞ ∈ ( 0 (,] +∞ ) ) )
33 elin ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ↔ ( +∞ ∈ ( 𝑥 (,] +∞ ) ∧ +∞ ∈ ( 0 (,] +∞ ) ) )
34 32 33 sylibr ( 𝑥 ∈ ℝ → +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) )
35 34 ad2antlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) → +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) )
36 letop ( ordTop ‘ ≤ ) ∈ Top
37 ovex ( 0 [,] +∞ ) ∈ V
38 iocpnfordt ( 𝑥 (,] +∞ ) ∈ ( ordTop ‘ ≤ )
39 iocpnfordt ( 0 (,] +∞ ) ∈ ( ordTop ‘ ≤ )
40 inopn ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ( 𝑥 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ∧ ( 0 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ) → ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) )
41 36 38 39 40 mp3an ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ )
42 elrestr ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ( 0 [,] +∞ ) ∈ V ∧ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ) → ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) )
43 36 37 41 42 mp3an ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
44 inss2 ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 (,] +∞ )
45 iocssicc ( 0 (,] +∞ ) ⊆ ( 0 [,] +∞ )
46 44 45 sstri ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 [,] +∞ )
47 sseqin2 ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 [,] +∞ ) ↔ ( ( 0 [,] +∞ ) ∩ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) )
48 46 47 mpbi ( ( 0 [,] +∞ ) ∩ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) )
49 incom ( ( 0 [,] +∞ ) ∩ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) = ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) )
50 48 49 eqtr3i ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) = ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) )
51 43 50 7 3eltr4i ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ 𝐽
52 51 a1i ( ( 𝜑𝑥 ∈ ℝ ) → ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ 𝐽 )
53 eleq2 ( 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ( +∞ ∈ 𝑎 ↔ +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) )
54 53 adantl ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( +∞ ∈ 𝑎 ↔ +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) )
55 54 biimprd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → +∞ ∈ 𝑎 ) )
56 simp-5r ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) ∧ 𝐴𝑎 ) → 𝑥 ∈ ℝ )
57 56 rexrd ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) ∧ 𝐴𝑎 ) → 𝑥 ∈ ℝ* )
58 simpr ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) ∧ 𝐴𝑎 ) → 𝐴𝑎 )
59 simp-4r ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) ∧ 𝐴𝑎 ) → 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) )
60 58 59 eleqtrd ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) ∧ 𝐴𝑎 ) → 𝐴 ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) )
61 elin ( 𝐴 ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ↔ ( 𝐴 ∈ ( 𝑥 (,] +∞ ) ∧ 𝐴 ∈ ( 0 (,] +∞ ) ) )
62 61 simplbi ( 𝐴 ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) )
63 60 62 syl ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) ∧ 𝐴𝑎 ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) )
64 elioc1 ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞ ) ) )
65 18 64 mpan2 ( 𝑥 ∈ ℝ* → ( 𝐴 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞ ) ) )
66 65 biimpa ( ( 𝑥 ∈ ℝ*𝐴 ∈ ( 𝑥 (,] +∞ ) ) → ( 𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞ ) )
67 66 simp2d ( ( 𝑥 ∈ ℝ*𝐴 ∈ ( 𝑥 (,] +∞ ) ) → 𝑥 < 𝐴 )
68 57 63 67 syl2anc ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) ∧ 𝐴𝑎 ) → 𝑥 < 𝐴 )
69 68 ex ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → ( 𝐴𝑎𝑥 < 𝐴 ) )
70 69 ralimdva ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 → ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝑥 < 𝐴 ) )
71 70 reximdva ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝑥 < 𝐴 ) )
72 fveq2 ( 𝑗 = 𝑙 → ( ℤ𝑗 ) = ( ℤ𝑙 ) )
73 72 raleqdv ( 𝑗 = 𝑙 → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ↔ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝑥 < 𝐴 ) )
74 73 cbvrexvw ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ↔ ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝑥 < 𝐴 )
75 71 74 syl6ibr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )
76 55 75 imim12d ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ) )
77 52 76 rspcimdv ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ) )
78 77 imp ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )
79 35 78 mpd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 )
80 79 ex ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )
81 80 ralrimdva ( 𝜑 → ( ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )
82 simplll ( ( ( ( 𝜑𝑎𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → 𝜑 )
83 simpllr ( ( ( ( 𝜑𝑎𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → 𝑎𝐽 )
84 simpr ( ( ( ( 𝜑𝑎𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → +∞ ∈ 𝑎 )
85 1 pnfneige0 ( ( 𝑎𝐽 ∧ +∞ ∈ 𝑎 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 )
86 83 84 85 syl2anc ( ( ( ( 𝜑𝑎𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 )
87 simplr ( ( ( ( 𝜑𝑎𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 )
88 r19.29r ( ( ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑥 ∈ ℝ ( ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )
89 simp-4l ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → 𝜑 )
90 uznnssnn ( 𝑙 ∈ ℕ → ( ℤ𝑙 ) ⊆ ℕ )
91 90 ad2antlr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → ( ℤ𝑙 ) ⊆ ℕ )
92 simpr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → 𝑘 ∈ ( ℤ𝑙 ) )
93 91 92 sseldd ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → 𝑘 ∈ ℕ )
94 89 93 jca ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → ( 𝜑𝑘 ∈ ℕ ) )
95 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → 𝑥 ∈ ℝ )
96 simpllr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → ( 𝑥 (,] +∞ ) ⊆ 𝑎 )
97 simplr ( ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑥 < 𝐴 ) → ( 𝑥 (,] +∞ ) ⊆ 𝑎 )
98 simplr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝑥 ∈ ℝ )
99 98 rexrd ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝑥 ∈ ℝ* )
100 2 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ∈ ( 0 [,] +∞ ) )
101 3 100 eqeltrrd ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) )
102 9 101 sselid ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ* )
103 102 ad2antrr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝐴 ∈ ℝ* )
104 simpr ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝑥 < 𝐴 )
105 pnfge ( 𝐴 ∈ ℝ*𝐴 ≤ +∞ )
106 103 105 syl ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝐴 ≤ +∞ )
107 65 biimpar ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞ ) ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) )
108 99 103 104 106 107 syl13anc ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) )
109 108 adantlr ( ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑥 < 𝐴 ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) )
110 97 109 sseldd ( ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑥 < 𝐴 ) → 𝐴𝑎 )
111 110 ex ( ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) → ( 𝑥 < 𝐴𝐴𝑎 ) )
112 94 95 96 111 syl21anc ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑙 ) ) → ( 𝑥 < 𝐴𝐴𝑎 ) )
113 112 ralimdva ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝑥 < 𝐴 → ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) )
114 113 reximdva ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) → ( ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝑥 < 𝐴 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) )
115 74 114 syl5bi ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) )
116 115 expimpd ( ( 𝜑𝑥 ∈ ℝ ) → ( ( ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) )
117 116 rexlimdva ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ( ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) )
118 88 117 syl5 ( 𝜑 → ( ( ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) )
119 118 imp ( ( 𝜑 ∧ ( ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 )
120 82 86 87 119 syl12anc ( ( ( ( 𝜑𝑎𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 )
121 120 exp31 ( ( 𝜑𝑎𝐽 ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 → ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) )
122 121 ralrimdva ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 → ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ) )
123 81 122 impbid ( 𝜑 → ( ∀ 𝑎𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑙 ) 𝐴𝑎 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )
124 23 123 bitrd ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < 𝐴 ) )