Metamath Proof Explorer


Theorem lnatexN

Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lnatex.b 𝐵 = ( Base ‘ 𝐾 )
lnatex.l = ( le ‘ 𝐾 )
lnatex.a 𝐴 = ( Atoms ‘ 𝐾 )
lnatex.n 𝑁 = ( Lines ‘ 𝐾 )
lnatex.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion lnatexN ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lnatex.b 𝐵 = ( Base ‘ 𝐾 )
2 lnatex.l = ( le ‘ 𝐾 )
3 lnatex.a 𝐴 = ( Atoms ‘ 𝐾 )
4 lnatex.n 𝑁 = ( Lines ‘ 𝐾 )
5 lnatex.m 𝑀 = ( pmap ‘ 𝐾 )
6 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
7 1 6 3 4 5 isline3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) ∈ 𝑁 ↔ ∃ 𝑟𝐴𝑠𝐴 ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) )
8 7 biimp3a ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) → ∃ 𝑟𝐴𝑠𝐴 ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) )
9 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑠𝐴 )
10 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑟𝑠 )
11 10 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑠𝑟 )
12 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑟 = 𝑃 )
13 11 12 neeqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑠𝑃 )
14 simpl11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝐾 ∈ HL )
15 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑟𝐴 )
16 2 6 3 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴 ) → 𝑠 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) )
17 14 15 9 16 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑠 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) )
18 simpl3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) )
19 17 18 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → 𝑠 𝑋 )
20 neeq1 ( 𝑞 = 𝑠 → ( 𝑞𝑃𝑠𝑃 ) )
21 breq1 ( 𝑞 = 𝑠 → ( 𝑞 𝑋𝑠 𝑋 ) )
22 20 21 anbi12d ( 𝑞 = 𝑠 → ( ( 𝑞𝑃𝑞 𝑋 ) ↔ ( 𝑠𝑃𝑠 𝑋 ) ) )
23 22 rspcev ( ( 𝑠𝐴 ∧ ( 𝑠𝑃𝑠 𝑋 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) )
24 9 13 19 23 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟 = 𝑃 ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) )
25 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → 𝑟𝐴 )
26 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → 𝑟𝑃 )
27 simpl11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → 𝐾 ∈ HL )
28 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → 𝑠𝐴 )
29 2 6 3 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑟𝐴𝑠𝐴 ) → 𝑟 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) )
30 27 25 28 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → 𝑟 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) )
31 simpl3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → 𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) )
32 30 31 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → 𝑟 𝑋 )
33 neeq1 ( 𝑞 = 𝑟 → ( 𝑞𝑃𝑟𝑃 ) )
34 breq1 ( 𝑞 = 𝑟 → ( 𝑞 𝑋𝑟 𝑋 ) )
35 33 34 anbi12d ( 𝑞 = 𝑟 → ( ( 𝑞𝑃𝑞 𝑋 ) ↔ ( 𝑟𝑃𝑟 𝑋 ) ) )
36 35 rspcev ( ( 𝑟𝐴 ∧ ( 𝑟𝑃𝑟 𝑋 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) )
37 25 26 32 36 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) ∧ 𝑟𝑃 ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) )
38 24 37 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) ∧ ( 𝑟𝐴𝑠𝐴 ) ∧ ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) )
39 38 3exp ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) → ( ( 𝑟𝐴𝑠𝐴 ) → ( ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) ) ) )
40 39 rexlimdvv ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) → ( ∃ 𝑟𝐴𝑠𝐴 ( 𝑟𝑠𝑋 = ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) ) )
41 8 40 mpd ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑀𝑋 ) ∈ 𝑁 ) → ∃ 𝑞𝐴 ( 𝑞𝑃𝑞 𝑋 ) )