Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) |
2 |
|
lnopcnbd |
⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) ) |
3 |
2
|
biimpa |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → 𝑇 ∈ BndLinOp ) |
4 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
5 |
2
|
biimparc |
⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝑇 ∈ LinOp ) → 𝑇 ∈ ContOp ) |
6 |
4 5
|
mpdan |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ ContOp ) |
7 |
4 6
|
jca |
⊢ ( 𝑇 ∈ BndLinOp → ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) |
8 |
3 7
|
impbii |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ↔ 𝑇 ∈ BndLinOp ) |
9 |
1 8
|
bitri |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ 𝑇 ∈ BndLinOp ) |